1
|
Adebowale K, Liao R, Suja VC, Kapate N, Lu A, Gao Y, Mitragotri S. Materials for Cell Surface Engineering. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2210059. [PMID: 36809574 DOI: 10.1002/adma.202210059] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Cell therapies are emerging as a promising new therapeutic modality in medicine, generating effective treatments for previously incurable diseases. Clinical success of cell therapies has energized the field of cellular engineering, spurring further exploration of novel approaches to improve their therapeutic performance. Engineering of cell surfaces using natural and synthetic materials has emerged as a valuable tool in this endeavor. This review summarizes recent advances in the development of technologies for decorating cell surfaces with various materials including nanoparticles, microparticles, and polymeric coatings, focusing on the ways in which surface decorations enhance carrier cells and therapeutic effects. Key benefits of surface-modified cells include protecting the carrier cell, reducing particle clearance, enhancing cell trafficking, masking cell-surface antigens, modulating inflammatory phenotype of carrier cells, and delivering therapeutic agents to target tissues. While most of these technologies are still in the proof-of-concept stage, the promising therapeutic efficacy of these constructs from in vitro and in vivo preclinical studies has laid a strong foundation for eventual clinical translation. Cell surface engineering with materials can imbue a diverse range of advantages for cell therapy, creating opportunities for innovative functionalities, for improved therapeutic efficacy, and transforming the fundamental and translational landscape of cell therapies.
Collapse
Affiliation(s)
- Kolade Adebowale
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Rick Liao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Vineeth Chandran Suja
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Neha Kapate
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Andrew Lu
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, 02134, USA
- Wyss Institute for Biologically Inspired Engineering, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Polyelectrolyte Complex Beads by Novel Two-Step Process for Improved Performance of Viable Whole-Cell Baeyer-Villiger Monoxygenase by Immobilization. Catalysts 2017. [DOI: 10.3390/catal7110353] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
|
3
|
Simó G, Fernández‐Fernández E, Vila‐Crespo J, Ruipérez V, Rodríguez‐Nogales JM. Research progress in coating techniques of alginate gel polymer for cell encapsulation. Carbohydr Polym 2017; 170:1-14. [DOI: 10.1016/j.carbpol.2017.04.013] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/04/2017] [Accepted: 04/08/2017] [Indexed: 11/27/2022]
|
4
|
Salama HE, Saad GR, Sabaa MW. Synthesis, characterization and antimicrobial activity of biguanidinylated chitosan- g -poly[( R )-3-hydroxybutyrate]. Int J Biol Macromol 2017; 101:438-447. [DOI: 10.1016/j.ijbiomac.2017.03.075] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/14/2016] [Accepted: 03/14/2017] [Indexed: 11/24/2022]
|
5
|
Salama HE, Saad GR, Sabaa MW. Synthesis, characterization, and biological activity of cross-linked chitosan biguanidine loaded with silver nanoparticles. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1880-1898. [DOI: 10.1080/09205063.2016.1239950] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Hend E. Salama
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Gamal R. Saad
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| | - Magdy W. Sabaa
- Faculty of Science, Department of Chemistry, Cairo University, Giza, Egypt
| |
Collapse
|
6
|
Mahou R, Passemard S, Carvello M, Petrelli A, Noverraz F, Gerber-Lemaire S, Wandrey C. Contribution of polymeric materials to progress in xenotransplantation of microencapsulated cells: a review. Xenotransplantation 2016; 23:179-201. [PMID: 27250036 DOI: 10.1111/xen.12240] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 12/13/2022]
Abstract
Cell microencapsulation and subsequent transplantation of the microencapsulated cells require multidisciplinary approaches. Physical, chemical, biological, engineering, and medical expertise has to be combined. Several natural and synthetic polymeric materials and different technologies have been reported for the preparation of hydrogels, which are suitable to protect cells by microencapsulation. However, owing to the frequent lack of adequate characterization of the hydrogels and their components as well as incomplete description of the technology, many results of in vitro and in vivo studies appear contradictory or cannot reliably be reproduced. This review addresses the state of the art in cell microencapsulation with special focus on microencapsulated cells intended for xenotransplantation cell therapies. The choice of materials, the design and fabrication of the microspheres, as well as the conditions to be met during the cell microencapsulation process, are summarized and discussed prior to presenting research results of in vitro and in vivo studies. Overall, this review will serve to sensitize medically educated specialists for materials and technological aspects of cell microencapsulation.
Collapse
Affiliation(s)
- Redouan Mahou
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute for Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Solène Passemard
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Michele Carvello
- Department of Surgery, San Raffaele Scientific Institute, Milan, Italy
| | | | - François Noverraz
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sandrine Gerber-Lemaire
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Christine Wandrey
- Interfaculty Institute of Bioengineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
7
|
Zhang Q, Lin D, Yao S. Review on biomedical and bioengineering applications of cellulose sulfate. Carbohydr Polym 2015; 132:311-22. [DOI: 10.1016/j.carbpol.2015.06.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 02/06/2023]
|
8
|
Dobysh VA, Koktysh NV, Tarasevich VA, Agabekov VE, Makatun VN, Antonovskaya LI, Belyasova NA. Synthesis and study of properties of the polyhexamethyleneguanidine complexes with the ions Cu2+, Zn2+, and Ni2+. RUSS J GEN CHEM+ 2012. [DOI: 10.1134/s1070363212110035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Preparation and characterization of ortho-biguanidinyl benzoyl chitosan hydrochloride and its antibacterial activities. Polym Bull (Berl) 2012. [DOI: 10.1007/s00289-012-0883-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
10
|
Zhao-Sheng C, Yue-Ming S, Chun-Sheng Y, Xue-Mei Z. Preparation, characterization, and antibacterial activities of para-biguanidinyl benzoyl chitosan hydrochloride. J Appl Polym Sci 2012. [DOI: 10.1002/app.33910] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
11
|
Bao M, Chen Q, Gong Y, Li Y, Wang H, Jiang G. Removal efficiency of heavy oil by free and immobilised microorganisms on laboratory-scale. CAN J CHEM ENG 2011. [DOI: 10.1002/cjce.20688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
12
|
Zhu LY, Lin DQ, Yao SJ. Biodegradation of polyelectrolyte complex films composed of chitosan and sodium cellulose sulfate as the controllable release carrier. Carbohydr Polym 2010. [DOI: 10.1016/j.carbpol.2010.04.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Silva CM, Ribeiro AJ, Ferreira D, Veiga F. Insulin encapsulation in reinforced alginate microspheres prepared by internal gelation. Eur J Pharm Sci 2006; 29:148-59. [PMID: 16952452 DOI: 10.1016/j.ejps.2006.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 06/21/2006] [Accepted: 06/25/2006] [Indexed: 10/24/2022]
Abstract
Insulin-loaded alginate microspheres prepared by emulsification/internal gelation were reinforced by blending with polyanionic additive polymers and/or chitosan-coating in order to increase the protection of insulin at simulated gastric pH and obtain a sustained release at simulated intestinal pH. Polyanionic additive polymers blended with alginate were cellulose acetate phtalate (CAP), Eudragit L100 (EL100), sodium carboxymethylcellulose (CMC), polyphosphate (PP), dextran sulfate (DS) and cellulose sulfate (CS). Chitosan-coating was applied by using a one-stage procedure. The influence of additive polymers and chitosan-coating on the size distribution of microspheres, encapsulation efficiency and release profile of insulin in simulated gastrointestinal pH conditions was studied. The mean diameter of blended microspheres ranged from 65 to 106 microm and encapsulation efficiency of insulin varied from 14 to 100%, reaching a maximum value when CS and DS were incorporated in the alginate matrix. Insulin release, at pH 1.2, was almost prevented by the incorporation of PP, DS and CS. When uncoated microspheres were transferred to pH 6.8, a fast dissolution occurred, independently of the additive polymer blended with alginate, and insulin was completely released. Increasing the additive polymer concentration in the alginate matrix and/or chitosan-coating the blended alginate microspheres did not promote a sustained release of insulin from microspheres at pH 6.8.
Collapse
Affiliation(s)
- Catarina M Silva
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra, Rua do Norte, 3000-295 Coimbra, Portugal.
| | | | | | | |
Collapse
|
14
|
Chen G, Yao SJ, Guan YX, Lin DQ. Preparation and characterization of NaCS–CMC/PDMDAAC capsules. Colloids Surf B Biointerfaces 2005; 45:136-43. [PMID: 16199144 DOI: 10.1016/j.colsurfb.2005.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2005] [Revised: 06/15/2005] [Accepted: 08/03/2005] [Indexed: 11/22/2022]
Abstract
A novel capsule system composed of sodium cellulose sulfate (NaCS), carboxymethyl cellulose (CMC) and poly[dimethyl(diallyl)ammonium chloride] (PDMDAAC) was prepared for improving the properties of NaCS/PDMDAAC capsules. The process parameters, such as CMC concentration (0, 2, 4, 6 and 8 g/L), NaCS concentration (20, 25, 30, 35 and 40 g/L), PDMDAAC concentration (20, 30, 40, 50, 60, 70 and 80 g/L), reaction time and temperature were investigated to understand their effects on the diameter, membrane thickness and mechanical strength of capsules. The optimum operation conditions for preparing NaCS-CMC/PDMDAAC capsules were determined as 6-8 g/L CMC, 35-40 g/L NaCS, 60 g/L PDMDAAC and polymerization for 30-40 min. Diffusion of substances with low molecular weight into capsules was investigated, and diffusion coefficients were calculated according to the developed model. The yeast of Candida krusei was chosen as representative cell to evaluate the effects of different cell loading on capsule mechanical strength. Meanwhile the encapsulated osmophilic C. krusei cells were cultured in 250 mL shaking flasks for 72 h to determine the cell leaking properties in short and long term.
Collapse
Affiliation(s)
- Guo Chen
- Department of Chemical and Biochemical Engineering, Zhejiang University, Hangzhou 310027, PR China
| | | | | | | |
Collapse
|