1
|
Yang X, Zhang Q, Yang N, Chang M, Ge Y, Zhou H, Li G. Traits variation of acorns and cupules during maturation process in Quercus variabilis and Quercus aliena. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:531-541. [PMID: 36774909 DOI: 10.1016/j.plaphy.2023.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Quercus variabilis and Quercus aliena are two native tree species in China, which have similar habitats, and their regeneration mainly depends on acorn dispersal. This study analyzed the contents of water, soluble sugar, starch, soluble protein, and total phenolics in acorns and cupules during the whole development process to explore the difference between species. Thereinto, starch and total phenol occupied the dominant roles as their high contents. The acorn starch contents increased sharply during development in both species, but the contents in Q. variabilis were almost twice those of Q. aliena when mature. Similarly, high expression levels of starch synthase, soluble starch synthase 2 (SSS2) were also found in the acorns of Q. variabilis. The total phenol contents in Q. variabilis acorns were high at the early stages, and decreased sharply to similar contents in Q. aliena when mature. Additionally, the cupules in Q. variabilis had high contents of total phenols during the whole development period. Similar trends were also found in the expression patterns of UGT84A13 and SDH. The high total phenols in acorns and cupules of Q. variabilis probably protect the acorns from Mechoris ursulus, as only Q. aliena suffered a severe pest infestation in the early development stages. This study not only clarifies the interspecific difference between storage and defense substances during the development process in acorns and cupules, but also deepens understanding the specialized mechanisms of plant-pest/animal interactions in Quercus.
Collapse
Affiliation(s)
- Xiong Yang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Research Center for Efficient Cultivation and Innovation of Deciduous Oaks of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Qian Zhang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Research Center for Efficient Cultivation and Innovation of Deciduous Oaks of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Ning Yang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Research Center for Efficient Cultivation and Innovation of Deciduous Oaks of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Muxi Chang
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Research Center for Efficient Cultivation and Innovation of Deciduous Oaks of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Yaoyao Ge
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Research Center for Efficient Cultivation and Innovation of Deciduous Oaks of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Huirong Zhou
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Research Center for Efficient Cultivation and Innovation of Deciduous Oaks of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| | - Guolei Li
- Key Laboratory of Silviculture and Conservation of the Ministry of Education, College of Forestry, Beijing Forestry University, Beijing, 100083, China; Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, 100083, China; Research Center for Efficient Cultivation and Innovation of Deciduous Oaks of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
2
|
Production of a Fungal Punicalagin-Degrading Enzyme by Solid-State Fermentation: Studies of Purification and Characterization. Foods 2023; 12:foods12040903. [PMID: 36832976 PMCID: PMC9956360 DOI: 10.3390/foods12040903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The present work describes the purification of an enzyme capable of degrading punicalagin. The enzyme was produced by Aspergillus niger GH1 by solid-state fermentation, and the enzyme production was induced by using ellagitannins as the sole carbon source. The purification steps included the concentration by lyophilization, desalting, anionic exchange, and gel filtration chromatography. The enzyme kinetic constants were calculated by using punicalagin, methyl gallate, and sugar beet arabinans. The molecular mass of the protein was estimated by SDS-PAGE. The identified bands were excised and digested using trypsin, and the peptides were submitted to HPLC-MS/MS analysis. The docking analysis was conducted, and a 3D model was created. The purification fold increases 75 times compared with the cell-free extract. The obtained Km values were 0.053 mM, 0.53% and 6.66 mM for punicalagin, sugar beet arabinans and methyl gallate, respectively. The optimal pH and temperature for the reaction were 5 and 40 °C, respectively. The SDS-PAGE and native PAGE analysis revealed the presence of two bands identified as α-l-arabinofuranosidase. Both enzymes were capable of degrading punicalagin and releasing ellagic acid.
Collapse
|
5
|
Ascacio-Valdés JA, Aguilera-Carbó AF, Buenrostro JJ, Prado-Barragán A, Rodríguez-Herrera R, Aguilar CN. The complete biodegradation pathway of ellagitannins by Aspergillus niger in solid-state fermentation. J Basic Microbiol 2016; 56:329-36. [PMID: 26915983 DOI: 10.1002/jobm.201500557] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 12/18/2015] [Indexed: 11/08/2022]
Abstract
Our research group has found preliminary evidences of the fungal biodegradation pathway of ellagitannins, revealing first the existence of an enzyme responsible for ellagitannins degradation, which hydrolyzes pomegranate ellagitannins and it was called ellagitannase or elagitannin acyl hydrolase. However, it is necessary to generate new and clear information in order to understand the ellagitannin degradation mechanisms. This work describes the distinctive and unique features of ellagitannin metabolism in fungi. In this study, hydrolysis of pomegranate ellagitannins by Aspergillus niger GH1 was studied by solid-state culture using polyurethane foam as support and pomegranate ellagitannins as substrate. The experiment was performed during 36 h. Results showed that ellagitannin biodegradation started after 6 h of fermentation, reaching the maximal biodegradation value at 18 h. It was observed that ellagitannase activity appeared after 6 h of culture, then, the enzymatic activity was maintained up to 24 h of culture reaching 390.15 U/L, after this period the enzymatic activity decreased. Electrophoretic band for ellagitannase was observed at 18 h. A band obtained using non-denaturing electrophoresis was identified as ellagitannase, then, a tandem analysis to reveal the ellagitannase activity was performed using Petri plate with pomegranate ellagitannins. The extracts were analyzed by HPLC/MS to evaluate ellagitannins degradation. Punicalin, gallagic acid, and ellagic acid were obtained from punicalagin. HPLC/MS analysis identified the gallagic acid as an intermediate molecule and immediate precursor of ellagic acid. The potential application of catabolic metabolism of ellagitannin hydrolysis for ellagic acid production is outlined.
Collapse
Affiliation(s)
- Juan A Ascacio-Valdés
- Department of Food Research, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, México
| | - Antonio F Aguilera-Carbó
- Department of Food Science and Nutrition, Universidad Autónoma Agraria "Antonio Narro", Buenavista, Saltillo, México
| | - José J Buenrostro
- Department of Biotechnology, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Saltillo, Coahuila, México
| | - Arely Prado-Barragán
- Department of Biotechnology, Universidad Autonoma Metropolitana, Unidad Iztapalapa, Saltillo, Coahuila, México
| | - Raúl Rodríguez-Herrera
- Department of Food Research, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, México
| | - Cristóbal N Aguilar
- Department of Food Research, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo, Coahuila, México
| |
Collapse
|
10
|
Ascacio-Valdés JA, Buenrostro JJ, De la Cruz R, Sepúlveda L, Aguilera AF, Prado A, Contreras JC, Rodríguez R, Aguilar CN. Fungal biodegradation of pomegranate ellagitannins. J Basic Microbiol 2013; 54:28-34. [PMID: 23564673 DOI: 10.1002/jobm.201200278] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 09/12/2012] [Indexed: 12/27/2022]
Abstract
Ellagitannins (ETs) are phytochemicals derived from secondary metabolism associated to defense system, with complex chemical structures, which have high participation during all stages of protection against microbial infection. In this study, we report the fungal biodegradation of a bioactive ET, named punicaline which was recovered and purified from pomegranate peels and used as carbon source in solid-state culture (SSC) using polyurethane as solid support. SSC was kinetically monitored during 36 h of incubation time. ETs and glycosides consumption were spectrophotometrically determined. Ellagic acid (EA) accumulation was analyzed by HPLC. Several enzymatic activities were assayed (cellulase, xylanase, β-glucosydase, polyphenoloxidase, tannase, and ET hydrolyzing activities). The consumption levels of ETs and glycosides were 66 and 40%, while EA accumulation reached 42.02 mg g(-1). A differential pattern of enzymatic activities was found; evidence from our studies suggests that the ET hydrolyzing activity is directly associated to EA accumulation, and production of this enzyme may represent the most critical step to successfully develop a bioprocess for production of an important bioactive compound, the EA.
Collapse
Affiliation(s)
- Juan A Ascacio-Valdés
- Food Research Department, School of Chemistry, Universidad Autónoma de Coahuila, Saltillo 25280, Coahuila, México
| | | | | | | | | | | | | | | | | |
Collapse
|