1
|
Fernández-Sandoval MT, García A, Teymennet-Ramírez KV, Arenas-Olivares DY, Martínez-Morales F, Trejo-Hernández MR. Removal of phenolic inhibitors from lignocellulose hydrolysates using laccases for the production of fuels and chemicals. Biotechnol Prog 2024; 40:e3406. [PMID: 37964692 DOI: 10.1002/btpr.3406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 10/14/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Lignocellulose is the most abundant biopolymer in the biosphere. It is inexpensive and therefore considered an attractive feedstock to produce biofuels and other biochemicals. Thermochemical and/or enzymatic pretreatment is used to release fermentable monomeric sugars. However, a variety of inhibitory by-products such as weak acids, furans, and phenolics that inhibit cell growth and fermentation are also released. Phenolic compounds are among the most toxic components in lignocellulosic hydrolysates and slurries derived from lignin decomposition, affecting overall fermentation processes and production yields and productivity. Ligninolytic enzymes have been shown to lower inhibitor concentrations in these hydrolysates, thereby enhancing their fermentability into valuable products. Among them, laccases, which are capable of oxidizing lignin and a variety of phenolic compounds in an environmentally benign manner, have been used for biomass delignification and detoxification of lignocellulose hydrolysates with promising results. This review discusses the state of the art of different enzymatic approaches to hydrolysate detoxification. In particular, laccases are used in separate or in situ detoxification steps, namely in free enzyme processes or immobilized by cell surface display technology to improve the efficiency of the fermentative process and consequently the production of second-generation biofuels and bio-based chemicals.
Collapse
Affiliation(s)
- M T Fernández-Sandoval
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - A García
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - K V Teymennet-Ramírez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - D Y Arenas-Olivares
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - F Martínez-Morales
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| | - M R Trejo-Hernández
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, México
| |
Collapse
|
2
|
Topaloğlu A, Esen Ö, Turanlı-Yıldız B, Arslan M, Çakar ZP. From Saccharomyces cerevisiae to Ethanol: Unlocking the Power of Evolutionary Engineering in Metabolic Engineering Applications. J Fungi (Basel) 2023; 9:984. [PMID: 37888240 PMCID: PMC10607480 DOI: 10.3390/jof9100984] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
Increased human population and the rapid decline of fossil fuels resulted in a global tendency to look for alternative fuel sources. Environmental concerns about fossil fuel combustion led to a sharp move towards renewable and environmentally friendly biofuels. Ethanol has been the primary fossil fuel alternative due to its low carbon emission rates, high octane content and comparatively facile microbial production processes. In parallel to the increased use of bioethanol in various fields such as transportation, heating and power generation, improvements in ethanol production processes turned out to be a global hot topic. Ethanol is by far the leading yeast output amongst a broad spectrum of bio-based industries. Thus, as a well-known platform microorganism and native ethanol producer, baker's yeast Saccharomyces cerevisiae has been the primary subject of interest for both academic and industrial perspectives in terms of enhanced ethanol production processes. Metabolic engineering strategies have been primarily adopted for direct manipulation of genes of interest responsible in mainstreams of ethanol metabolism. To overcome limitations of rational metabolic engineering, an alternative bottom-up strategy called inverse metabolic engineering has been widely used. In this context, evolutionary engineering, also known as adaptive laboratory evolution (ALE), which is based on random mutagenesis and systematic selection, is a powerful strategy to improve bioethanol production of S. cerevisiae. In this review, we focus on key examples of metabolic and evolutionary engineering for improved first- and second-generation S. cerevisiae bioethanol production processes. We delve into the current state of the field and show that metabolic and evolutionary engineering strategies are intertwined and many metabolically engineered strains for bioethanol production can be further improved by powerful evolutionary engineering strategies. We also discuss potential future directions that involve recent advancements in directed genome evolution, including CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Alican Topaloğlu
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Ömer Esen
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Burcu Turanlı-Yıldız
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| | - Mevlüt Arslan
- Department of Genetics, Faculty of Veterinary Medicine, Van Yüzüncü Yıl University, Van 65000, Türkiye;
| | - Zeynep Petek Çakar
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Istanbul Technical University, Istanbul 34469, Türkiye; (A.T.); (Ö.E.)
- Dr. Orhan Öcalgiray Molecular Biology, Biotechnology and Genetics Research Center (ITU-MOBGAM), Istanbul Technical University, Istanbul 34469, Türkiye;
| |
Collapse
|
3
|
Liu ZL, Huang X. Copy number variants impact phenotype-genotype relationships for adaptation of industrial yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2022; 106:6611-6623. [PMID: 36117206 DOI: 10.1007/s00253-022-12137-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/24/2022] [Accepted: 08/17/2022] [Indexed: 11/29/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae possesses a plastic genome enabling its adaptation to varied environment conditions. A more robust ethanologenic industrial yeast strain NRRL Y-50049 was obtained through laboratory adaptation that is resistant to 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF), a major class of toxic chemicals associated with lignocellulose-to-biofuel conversion. A significant amount of knowledge has been achieved in characterizing its tolerant phenotypes and molecular mechanisms of the resistance. Recent findings on a limited number of nonsynonymous SNP (single nucleotide polymorphism) detected in NRRL Y-50049 compared with its progenitor NRRL Y-12632 raised doubt of SNP roles in the tolerance adaptation. The genotype-phenotype relationship for yeast adaptation to the toxic chemicals is yet unclear. Here, we examine copy number variant (CNV) of the adapted strain NRRL Y-50049 to address phenotype-genotype relationships. As a background information, CNV of model strain S288C of the reference genome was also examined versus the industrial-type strain NRRL Y-12632. More than 200 CNVs, mostly duplication events, were detected in NRRL Y-12632 compared with the laboratory model strain S288C. Such enriched genetic background supports its more diversified phenotype response for the industrial yeast than the laboratory strain S288C. Comparing the two industrial strains, we found extra nine CNVs in the mitochondrial genome and 28 CNVs in the nuclear genome of NRRL Y-50049 versus its progenitor NRRL Y-12632. Continued DNA recombination event and high rate of CNV observed in NRRL Y-50049 versus its progenitor suggests that CNV is more impactful than SNP in association with phenotype-genotype relationships of yeast adaptation to the toxic chemical stress. COX1 and COB loci were defined as DNA recombination hotspots in the mitochondrial genome for the industrial yeast based on the high frequency of CNVs observed in these loci. KEY POINTS: • COX1 and COB loci are identified as DNA recombination hotspots for the industrial yeast. • The industrial yeast type strain NRRL Y-12632 possesses more CNVs vs the reference genome S288C. • CNV is more important than SNP on phenotype-genotype relationships for yeast adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, 1815 N. University Street, Peoria, IL, 61604, USA.
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
4
|
How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr Genet 2022; 68:319-342. [PMID: 35362784 DOI: 10.1007/s00294-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/25/2022]
Abstract
The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.
Collapse
|
5
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
6
|
Jayakody LN, Chinmoy B, Turner TL. Trends in valorization of highly-toxic lignocellulosic biomass derived-compounds via engineered microbes. BIORESOURCE TECHNOLOGY 2022; 346:126614. [PMID: 34954359 DOI: 10.1016/j.biortech.2021.126614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 05/26/2023]
Abstract
Lignocellulosic biomass-derived fuels, chemicals, and materials are promising sustainable solutions to replace the current petroleum-based production. The direct microbial conversion of thermos-chemically pretreated lignocellulosic biomass is hampered by the presence of highly toxic chemical compounds. Also, thermo-catalytic upgrading of lignocellulosic biomass generates wastewater that contains heterogeneous toxic chemicals, a mixture of unutilized carbon. Metabolic engineering efforts have primarily focused on the conversion of carbohydrates in lignocellulose biomass; substantial opportunities exist to harness value from toxic lignocellulose-derived toxic compounds. This article presents the comprehensive metabolic routes and tolerance mechanisms to develop robust synthetic microbial cell factories to valorize the highly toxic compounds to advanced-platform chemicals. The obtained platform chemicals can be used to manufacture high-value biopolymers and biomaterials via a hybrid biochemical approach for replacing petroleum-based incumbents. The proposed strategy enables a sustainable bio-based materials economy by microbial biofunneling of lignocellulosic biomass-derived toxic molecules, an untapped biogenic carbon.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Science, Southern Illinois University Carbondale, Carbondale, IL, USA; Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Baroi Chinmoy
- Illinois Sustainable Technology Center, University of Illinois Urbana Champaign, IL, USA
| | - Timothy L Turner
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
7
|
Erian AM, Sauer M. Utilizing yeasts for the conversion of renewable feedstocks to sugar alcohols - a review. BIORESOURCE TECHNOLOGY 2022; 346:126296. [PMID: 34798255 DOI: 10.1016/j.biortech.2021.126296] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/30/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Sugar alcohols are widely marketed compounds. They are useful building block chemicals and of particular value as low- or non-calorigenic sweeteners, serving as sugar substitutes in the food industry. To date most sugar alcohols are produced by chemical routes using pure sugars, but a transition towards the use of renewable, non-edible feedstocks is anticipated. Several yeasts are naturally able to convert renewable feedstocks, such as lignocellulosic substrates, glycerol and molasses, into sugar alcohols. These bioconversions often face difficulties to obtain sufficiently high yields and productivities necessary for industrialization. This review provides insight into the most recent studies on utilizing yeasts for the conversion of renewable feedstocks to diverse sugar alcohols, including xylitol, erythritol, mannitol and arabitol. Moreover, metabolic approaches are highlighted that specifically target shortcomings of sugar alcohol production by yeasts from these renewable substrates.
Collapse
Affiliation(s)
- Anna Maria Erian
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Michael Sauer
- CD-Laboratory for Biotechnology of Glycerol, Muthgasse 18, Vienna, Austria; University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
8
|
Improving Acetic Acid and Furfural Resistance of Xylose-Fermenting Saccharomyces cerevisiae Strains by Regulating Novel Transcription Factors Revealed via Comparative Transcriptomic Analysis. Appl Environ Microbiol 2021; 87:AEM.00158-21. [PMID: 33712428 DOI: 10.1128/aem.00158-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/04/2021] [Indexed: 11/20/2022] Open
Abstract
Acetic acid and furfural are the two prevalent inhibitors coexisting with glucose and xylose in lignocellulosic hydrolysate. The transcriptional regulations of Saccharomyces cerevisiae in response to acetic acid (Aa), furfural (Fur), and the mixture of acetic acid and furfural (Aa_Fur) were revealed during mixed glucose and xylose fermentation. Carbohydrate metabolism pathways were significantly enriched in response to Aa, while pathways of xenobiotic biodegradation and metabolism were significantly enriched in response to Fur. In addition to these pathways, other pathways were activated in response to Aa_Fur, i.e., cofactor and vitamin metabolism and lipid metabolism. Overexpression of Haa1p or Tye7p improved xylose consumption rates by nearly 50%, while the ethanol yield was enhanced by nearly 8% under acetic acid and furfural stress conditions. Co-overexpression of Haa1p and Tye7p resulted in a 59% increase in xylose consumption rate and a 12% increase in ethanol yield, revealing the beneficial effects of Haa1p and Tye7p on improving the tolerance of yeast to mixed acetic acid and furfural.IMPORTANCE Inhibitor tolerance is essential for S. cerevisiae when fermenting lignocellulosic hydrolysate with various inhibitors, including weak acids, furans, and phenols. The details regarding how xylose-fermenting S. cerevisiae strains respond to multiple inhibitors during fermenting mixed glucose and xylose are still unknown. This study revealed the transcriptional regulation mechanism of an industrial xylose-fermenting S. cerevisiae strain in response to acetic acid and furfural. The transcription factor Haa1p was found to be involved in both acetic acid and furfural tolerance. In addition to Haa1p, four other transcription factors, Hap4p, Yox1p, Tye7p, and Mga1p, were identified as able to improve the resistance of yeast to these two inhibitors. This study underscores the feasibility of uncovering effective transcription factors for constructing robust strains for lignocellulosic bioethanol production.
Collapse
|
9
|
Liu ZL. Reasons for 2-furaldehyde and 5-hydroxymethyl-2-furaldehyde resistance in Saccharomyces cerevisiae: current state of knowledge and perspectives for further improvements. Appl Microbiol Biotechnol 2021; 105:2991-3007. [PMID: 33830300 DOI: 10.1007/s00253-021-11256-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/16/2021] [Accepted: 03/23/2021] [Indexed: 11/25/2022]
Abstract
Common toxic compounds 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) are formed from dehydration of pentose and hexose, respectively, during decomposition of lignocellulosic biomass polymers. Furfural and HMF represent a major class of aldehyde toxic chemicals that inhibit microbial growth and interfere with subsequent fermentation for production of renewable fuels and chemicals. Understanding mechanisms of yeast tolerance aids development of tolerant strains as the most economic means to overcome the toxicity. This review updates current knowledge on yeast resistance to these toxic chemicals obtained from rapid advances in the past few years. Findings are largely exemplified by an adapted strain NRRL Y-50049 compared with its progenitor, the industrial yeast Saccharomyces cerevisiae type strain NRRL Y-12632. Newly characterized molecular phenotypes distinguished acquired resistant components of Y-50049 from innate stress response of its progenitor Y-12632. These findings also raised important questions on how to address more deeply ingrained changes in addition to local renovations for yeast adaptation. An early review on understandings of yeast tolerance to these inhibitory compounds is available and its contents omitted here to avoid redundancy. Controversial and confusing issues on identification of yeast resistance to furfural and HMF are further clarified aiming improved future research. Propositions and perspectives on research understanding molecular mechanisms of yeast resistance and future improvements are also presented. KEY POINTS: • Distinguished adapted resistance from innate stress response in yeast. • Defined pathway-based molecular phenotypes of yeast resistance. • Proposed genomic insight and perspectives on yeast resistance and adaptation.
Collapse
Affiliation(s)
- Z Lewis Liu
- National Center for Agricultural Utilization Research, Bioenergy Research Unit, USDA Agricultural Research Service, 1815 N. University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
10
|
Jayakody LN, Jin YS. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021; 105:2675-2692. [PMID: 33743026 DOI: 10.1007/s00253-021-11213-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
Abstract
Aldehydes are ubiquitous electrophilic compounds that ferment microorganisms including Saccharomyces cerevisiae encounter during the fermentation processes to produce food, fuels, chemicals, and pharmaceuticals. Aldehydes pose severe toxicity to the growth and metabolism of the S. cerevisiae through a variety of toxic molecular mechanisms, predominantly via damaging macromolecules and hampering the production of targeted compounds. Compounds with aldehyde functional groups are far more toxic to S. cerevisiae than all other functional classes, and toxic potency depends on physicochemical characteristics of aldehydes. The yeast synthetic biology community established a design-build-test-learn framework to develop S. cerevisiae cell factories to valorize the sustainable and renewable biomass, including the lignin-derived substrates. However, thermochemically pretreated biomass-derived substrate streams contain diverse aldehydes (e.g., glycolaldehyde and furfural), and biological conversions routes of lignocellulosic compounds consist of toxic aldehyde intermediates (e.g., formaldehyde and methylglyoxal), and some of the high-value targeted products have aldehyde functional group (e.g., vanillin and benzaldehyde). Numerous studies comprehensively characterized both single and additive effects of aldehyde toxicity via systems biology investigations, and novel molecular approaches have been discovered to overcome the aldehyde toxicity. Based on those novel approaches, researchers successfully developed synthetic yeast cell factories to convert lignocellulosic substrates to valuable products, including aldehyde compounds. In this mini-review, we highlight the salient relationship of physicochemical characteristics and molecular toxicity of aldehydes, the molecular detoxification and macromolecules protection mechanisms of aldehydes, and the advances of engineering robust S. cerevisiae against complex mixtures of aldehyde inhibitors. KEY POINTS: • We reviewed structure-activity relationships of aldehyde toxicity on S. cerevisiae. • Two-tier protection mechanisms to alleviate aldehyde toxicity are presented. • We highlighted the strategies to overcome the synergistic toxicity of aldehydes.
Collapse
Affiliation(s)
- Lahiru N Jayakody
- School of Biological Sciences, Southern Illinois University Carbondale, Carbondale, IL, USA.
- Fermentation Science Institute, Southern Illinois University Carbondale, Carbondale, IL, USA.
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
11
|
Kłosowski G, Mikulski D. Impact of Lignocellulose Pretreatment By-Products on S. cerevisiae Strain Ethanol Red Metabolism during Aerobic and An-aerobic Growth. Molecules 2021; 26:molecules26040806. [PMID: 33557207 PMCID: PMC7913964 DOI: 10.3390/molecules26040806] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the specific response of yeast cells to environmental stress factors is the starting point for selecting the conditions of adaptive culture in order to obtain a yeast line with increased resistance to a given stress factor. The aim of the study was to evaluate the specific cellular response of Saccharomyces cerevisiae strain Ethanol Red to stress caused by toxic by-products generated during the pretreatment of lignocellulose, such as levulinic acid, 5-hydroxymethylfurfural, furfural, ferulic acid, syringaldehyde and vanillin. The presence of 5-hydroxymethylfurfural at the highest analyzed concentration (5704.8 ± 249.3 mg/L) under aerobic conditions induced the overproduction of ergosterol and trehalose. On the other hand, under anaerobic conditions (during the alcoholic fermentation), a decrease in the biosynthesis of these environmental stress indicators was observed. The tested yeast strain was able to completely metabolize 5-hydroxymethylfurfural, furfural, syringaldehyde and vanillin, both under aerobic and anaerobic conditions. Yeast cells reacted to the presence of furan aldehydes by overproducing Hsp60 involved in the control of intracellular protein folding. The results may be helpful in optimizing the process parameters of second-generation ethanol production, in order to reduce the formation and toxic effects of fermentation inhibitors.
Collapse
|
12
|
Mertens JA, Skory CD, Nichols NN, Hector RE. Impact of stress-response related transcription factor overexpression on lignocellulosic inhibitor tolerance of Saccharomyces cerevisiae environmental isolates. Biotechnol Prog 2020; 37:e3094. [PMID: 33085224 DOI: 10.1002/btpr.3094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 10/02/2020] [Accepted: 10/16/2020] [Indexed: 11/07/2022]
Abstract
Numerous transcription factor genes associated with stress response are upregulated in Saccharomyces cerevisiae grown in the presence of inhibitors that result from pretreatment processes to unlock simple sugars from biomass. To determine if overexpression of transcription factors could improve inhibitor tolerance in robust S. cerevisiae environmental isolates as has been demonstrated in S. cerevisiae haploid laboratory strains, transcription factors were overexpressed at three different expression levels in three S. cerevisiae environmental isolates. Overexpression of the YAP1 transcription factor in these isolates did not lead to increased growth rate or reduced lag in growth, and in some cases was detrimental, when grown in the presence of either lignocellulosic hydrolysates or furfural and 5-hydroxymethyl furfural individually. The expressed Yap1p localized correctly and the expression construct improved inhibitor tolerance of a laboratory strain as previously reported, indicating that lack of improvement in the environmental isolates was due to factors other than nonfunctional expression constructs or mis-folded protein. Additional stress-related transcription factors, MSN2, MSN4, HSF1, PDR1, and RPN4, were also overexpressed at three different expression levels and all failed to improve inhibitor tolerance. Transcription factor overexpression alone is unlikely to be a viable route toward increased inhibitor tolerance of robust environmental S. cerevisiae strains.
Collapse
Affiliation(s)
- Jeffrey A Mertens
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| | - Christopher D Skory
- Renewable Product Technology Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| | - Nancy N Nichols
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| | - Ronald E Hector
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, U.S. Department of Agriculture, Peoria, Illinois, USA
| |
Collapse
|
13
|
Cámara E, Lenitz I, Nygård Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci Rep 2020; 10:14605. [PMID: 32884066 PMCID: PMC7471924 DOI: 10.1038/s41598-020-71648-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology-directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fluorescent protein-encoding genes under two different promoters allowing expression alterations up to ~ 2.5-fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design-build-test cycle for developing various industrial production strains.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Ibai Lenitz
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
14
|
Liu ZL, Ma M. Pathway-based signature transcriptional profiles as tolerance phenotypes for the adapted industrial yeast Saccharomyces cerevisiae resistant to furfural and HMF. Appl Microbiol Biotechnol 2020; 104:3473-3492. [PMID: 32103314 DOI: 10.1007/s00253-020-10434-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 11/25/2019] [Accepted: 02/04/2020] [Indexed: 10/24/2022]
Abstract
The industrial yeast Saccharomyces cerevisiae has a plastic genome with a great flexibility in adaptation to varied conditions of nutrition, temperature, chemistry, osmolarity, and pH in diversified applications. A tolerant strain against 2-furaldehyde (furfural) and 5-hydroxymethyl-2-furaldehyde (HMF) was successfully obtained previously by adaptation through environmental engineering toward development of the next-generation biocatalyst. Using a time-course comparative transcriptome analysis in response to a synergistic challenge of furfural-HMF, here we report tolerance phenotypes of pathway-based transcriptional profiles as components of the adapted defensive system for the tolerant strain NRRL Y-50049. The newly identified tolerance phenotypes were involved in biosynthesis superpathway of sulfur amino acids, defensive reduction-oxidation reaction process, cell wall response, and endogenous and exogenous cellular detoxification. Key transcription factors closely related to these pathway-based components, such as Yap1, Met4, Met31/32, Msn2/4, and Pdr1/3, were also presented. Many important genes in Y-50049 acquired an enhanced transcription background and showed continued increased expressions during the entire lag phase against furfural-HMF. Such signature expressions distinguished tolerance phenotypes of Y-50049 from the innate stress response of its progenitor NRRL Y-12632, an industrial type strain. The acquired yeast tolerance is believed to be evolved in various mechanisms at the genomic level. Identification of legitimate tolerance phenotypes provides a basis for continued investigations on pathway interactions and dissection of mechanisms of yeast tolerance and adaptation at the genomic level.
Collapse
Affiliation(s)
- Z Lewis Liu
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA.
| | - Menggen Ma
- Bioenergy Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service,U.S. Department of Agriculture, 1815 N University Street, Peoria, IL, 61604, USA
| |
Collapse
|
15
|
Feldman D, Kowbel DJ, Cohen A, Glass NL, Hadar Y, Yarden O. Identification and manipulation of Neurospora crassa genes involved in sensitivity to furfural. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:210. [PMID: 31508149 PMCID: PMC6724289 DOI: 10.1186/s13068-019-1550-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/24/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Biofuels derived from lignocellulosic biomass are a viable alternative to fossil fuels required for transportation. Following plant biomass pretreatment, the furan derivative furfural is present at concentrations which are inhibitory to yeasts. Detoxification of furfural is thus important for efficient fermentation. Here, we searched for new genetic attributes in the fungus Neurospora crassa that may be linked to furfural tolerance. The fact that furfural is involved in the natural process of sexual spore germination of N. crassa and that this fungus is highly amenable to genetic manipulations makes it a rational candidate for this study. RESULTS Both hypothesis-based and unbiased (random promotor mutagenesis) approaches were performed to identify N. crassa genes associated with the response to furfural. Changes in the transcriptional profile following exposure to furfural revealed that the affected processes were, overall, similar to those observed in Saccharomyces cerevisiae. N. crassa was more tolerant (by ~ 30%) to furfural when carboxymethyl cellulose was the main carbon source as opposed to sucrose, indicative of a link between carbohydrate metabolism and furfural tolerance. We also observed increased tolerance in a Δcre-1 mutant (CRE-1 is a key transcription factor that regulates the ability of fungi to utilize non-preferred carbon sources). In addition, analysis of aldehyde dehydrogenase mutants showed that ahd-2 (NCU00378) was involved in tolerance to furfural as well as the predicted membrane transporter NCU05580 (flr-1), a homolog of FLR1 in S. cerevisiae. Further to the rational screening, an unbiased approach revealed additional genes whose inactivation conferred increased tolerance to furfural: (i) NCU02488, which affected the abundance of the non-anchored cell wall protein NCW-1 (NCU05137), and (ii) the zinc finger protein NCU01407. CONCLUSIONS We identified attributes in N. crassa associated with tolerance or degradation of furfural, using complementary research approaches. The manipulation of the genes involved in furan sensitivity can provide a means for improving the production of biofuel producing strains. Similar research approaches can be utilized in N. crassa and other filamentous fungi to identify additional attributes relevant to other furans or toxic chemicals.
Collapse
Affiliation(s)
- Daria Feldman
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - David J. Kowbel
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
| | - Adi Cohen
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - N. Louise Glass
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720 USA
- Environmental Genomics and Systems Biology Division, The Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA
| | - Yitzhak Hadar
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| | - Oded Yarden
- Department of Plant Pathology and Microbiology, The R.H. Smith Faculty Agriculture, Food and Environment, The Hebrew University of Jerusalem, 7600001 Rehovot, Israel
| |
Collapse
|
16
|
Kang K, Bergdahl B, Machado D, Dato L, Han TL, Li J, Villas-Boas S, Herrgård MJ, Förster J, Panagiotou G. Linking genetic, metabolic, and phenotypic diversity among Saccharomyces cerevisiae strains using multi-omics associations. Gigascience 2019; 8:giz015. [PMID: 30715293 PMCID: PMC6446221 DOI: 10.1093/gigascience/giz015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/29/2018] [Accepted: 01/24/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND The selection of bioengineering platform strains and engineering strategies to improve the stress resistance of Saccharomyces cerevisiae remains a pressing need in bio-based chemical production. Thus, a systematic effort to exploit genotypic and phenotypic diversity to boost yeast's industrial value is still urgently needed. RESULTS We analyzed 5,400 growth curves obtained from 36 S. cerevisiae strains and comprehensively profiled their resistances against 13 industrially relevant stresses. We observed that bioethanol and brewing strains exhibit higher resistance against acidic conditions; however, plant isolates tend to have a wider range of resistance, which may be associated with their metabolome and fluxome signatures in the tricarboxylic acid cycle and fatty acid metabolism. By deep genomic sequencing, we found that industrial strains have more genomic duplications especially affecting transcription factors, showing that they result from disparate evolutionary paths in comparison with the environmental strains, which have more indels, gene deletions, and strain-specific genes. Genome-wide association studies coupled with protein-protein interaction networks uncovered novel genetic determinants of stress resistances. CONCLUSIONS These resistance-related engineering targets and strain rankings provide a valuable source for engineering significantly improved industrial platform strains.
Collapse
Affiliation(s)
- Kang Kang
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R., China
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Basti Bergdahl
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Daniel Machado
- Department of Biological Engineering, School of Engineering, University of Minho, Braga, Portugal
- The European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Laura Dato
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ting-Li Han
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Jun Li
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R., China
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
| | - Silas Villas-Boas
- Centre for Microbial Innovation, School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Markus J Herrgård
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Jochen Förster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Gianni Panagiotou
- Systems Biology & Bioinformatics Group, School of Biological Sciences, The University of Hong Kong, Hong Kong S.A.R., China
- Systems Biology & Bioinformatics Unit, Leibniz Institute for Natural Product Research and Infection Biology – Hans Knöll Institute, Jena, Germany
- Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong S.A.R., China
| |
Collapse
|
17
|
de Paula RG, Antoniêto ACC, Ribeiro LFC, Srivastava N, O'Donovan A, Mishra PK, Gupta VK, Silva RN. Engineered microbial host selection for value-added bioproducts from lignocellulose. Biotechnol Adv 2019; 37:107347. [PMID: 30771467 DOI: 10.1016/j.biotechadv.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/27/2019] [Accepted: 02/08/2019] [Indexed: 12/12/2022]
Abstract
Lignocellulose is a rich and sustainable globally available carbon source and is considered a prominent alternative raw material for producing biofuels and valuable chemical compounds. Enzymatic hydrolysis is one of the crucial steps of lignocellulose degradation. Cellulolytic and hemicellulolytic enzyme mixes produced by different microorganisms including filamentous fungi, yeasts and bacteria, are used to degrade the biomass to liberate monosaccharides and other compounds for fermentation or conversion to value-added products. During biomass pretreatment and degradation, toxic compounds are produced, and undesirable carbon catabolic repression (CCR) can occur. In order to solve this problem, microbial metabolic pathways and transcription factors involved have been investigated along with the application of protein engineering to optimize the biorefinery platform. Engineered Microorganisms have been used to produce specific enzymes to breakdown biomass polymers and metabolize sugars to produce ethanol as well other biochemical compounds. Protein engineering strategies have been used for modifying lignocellulolytic enzymes to overcome enzymatic limitations and improving both their production and functionality. Furthermore, promoters and transcription factors, which are key proteins in this process, are modified to promote microbial gene expression that allows a maximum performance of the hydrolytic enzymes for lignocellulosic degradation. The present review will present a critical discussion and highlight the aspects of the use of microorganisms to convert lignocellulose into value-added bioproduct as well combat the bottlenecks to make the biorefinery platform from lignocellulose attractive to the market.
Collapse
Affiliation(s)
- Renato Graciano de Paula
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | - Liliane Fraga Costa Ribeiro
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Neha Srivastava
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Anthonia O'Donovan
- School of Science and Computing, Galway-Mayo Institute of Technology, Galway, Ireland
| | - P K Mishra
- Department of Chemical Engineering & Technology, IIT (BHU), Varanasi 221005, U.P, India
| | - Vijai K Gupta
- ERA Chair of Green Chemistry, Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia.
| | - Roberto N Silva
- Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
18
|
Cunha JT, Romaní A, Costa CE, Sá-Correia I, Domingues L. Molecular and physiological basis of Saccharomyces cerevisiae tolerance to adverse lignocellulose-based process conditions. Appl Microbiol Biotechnol 2018; 103:159-175. [PMID: 30397768 DOI: 10.1007/s00253-018-9478-3] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 11/27/2022]
Abstract
Lignocellulose-based biorefineries have been gaining increasing attention to substitute current petroleum-based refineries. Biomass processing requires a pretreatment step to break lignocellulosic biomass recalcitrant structure, which results in the release of a broad range of microbial inhibitors, mainly weak acids, furans, and phenolic compounds. Saccharomyces cerevisiae is the most commonly used organism for ethanol production; however, it can be severely distressed by these lignocellulose-derived inhibitors, in addition to other challenging conditions, such as pentose sugar utilization and the high temperatures required for an efficient simultaneous saccharification and fermentation step. Therefore, a better understanding of the yeast response and adaptation towards the presence of these multiple stresses is of crucial importance to design strategies to improve yeast robustness and bioconversion capacity from lignocellulosic biomass. This review includes an overview of the main inhibitors derived from diverse raw material resultants from different biomass pretreatments, and describes the main mechanisms of yeast response to their presence, as well as to the presence of stresses imposed by xylose utilization and high-temperature conditions, with a special emphasis on the synergistic effect of multiple inhibitors/stressors. Furthermore, successful cases of tolerance improvement of S. cerevisiae are highlighted, in particular those associated with other process-related physiologically relevant conditions. Decoding the overall yeast response mechanisms will pave the way for the integrated development of sustainable yeast cell-based biorefineries.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, 4710-057, Braga, Portugal.
| |
Collapse
|
19
|
Wang H, Li Q, Kuang X, Xiao D, Han X, Hu X, Li X, Ma M. Functions of aldehyde reductases from Saccharomyces cerevisiae in detoxification of aldehyde inhibitors and their biotechnological applications. Appl Microbiol Biotechnol 2018; 102:10439-10456. [PMID: 30306200 DOI: 10.1007/s00253-018-9425-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 11/25/2022]
Abstract
Bioconversion of lignocellulosic biomass to high-value bioproducts by fermentative microorganisms has drawn extensive attentions worldwide. Lignocellulosic biomass cannot be efficiently utilized by microorganisms, such as Saccharomyces cerevisiae, but has to be pretreated prior to fermentation. Aldehyde compounds, as the by-products generated in the pretreatment process of lignocellulosic biomass, are considered as the most important toxic inhibitors to S. cerevisiae cells for their growth and fermentation. Aldehyde group in the aldehyde inhibitors, including furan aldehydes, aliphatic aldehydes, and phenolic aldehydes, is identified as the toxic factor. It has been demonstrated that S. cerevisiae has the ability to in situ detoxify aldehydes to their corresponding less or non-toxic alcohols. This reductive reaction is catalyzed by the NAD(P)H-dependent aldehyde reductases. In recent years, detoxification of aldehyde inhibitors by S. cerevisiae has been extensively studied and a huge progress has been made. This mini-review summarizes the classifications and structural features of the characterized aldehyde reductases from S. cerevisiae, their catalytic abilities to exogenous and endogenous aldehydes and effects of metal ions, chemical protective additives, and salts on enzyme activities, subcellular localization of the aldehyde reductases and their possible roles in protection of the subcellular organelles, and transcriptional regulation of the aldehyde reductase genes by the key stress-response transcription factors. Cofactor preference of the aldehyde reductases and their molecular mechanisms and efficient supply pathways of cofactors, as well as biotechnological applications of the aldehyde reductases in the detoxification of aldehyde inhibitors derived from pretreatment of lignocellulosic biomass, are also included or supplemented in this mini-review.
Collapse
Affiliation(s)
- Hanyu Wang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Qian Li
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiaolin Kuang
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Difan Xiao
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xuebing Han
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xiangdong Hu
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China
| | - Menggen Ma
- Institute of Natural Resources and Geographic Information Technology, College of Resources, Sichuan Agricultural University, No. 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
- Department of Applied Microbiology, College of Resources, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, Sichuan, People's Republic of China.
| |
Collapse
|
20
|
Mertens JA, Kelly A, Hector RE. Screening for inhibitor tolerant Saccharomyces cerevisiae strains from diverse environments for use as platform strains for production of fuels and chemicals from biomass. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.biteb.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
21
|
Liu ZL. Understanding the tolerance of the industrial yeast Saccharomyces cerevisiae against a major class of toxic aldehyde compounds. Appl Microbiol Biotechnol 2018; 102:5369-5390. [PMID: 29725719 DOI: 10.1007/s00253-018-8993-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Development of the next-generation biocatalyst is vital for fermentation-based industrial applications and a sustainable bio-based economy. Overcoming the major class of toxic compounds associated with lignocellulose-to-biofuels conversion is one of the significant challenges for new strain development. A significant number of investigations have been made to understand mechanisms of the tolerance for industrial yeast. It is humbling to learn how complicated the cell's response to the toxic chemicals is and how little we have known about yeast tolerance in the universe of the living cell. This study updates our current knowledge on the tolerance of industrial yeast against aldehyde inhibitory compounds at cellular, molecular and the genomic levels. It is comprehensive yet specific based on reproducible evidence and cross confirmed findings from different investigations using varied experimental approaches. This research approaches a rational foundation toward a more comprehensive understanding on the yeast tolerance. Discussions and perspectives are also proposed for continued exploring the puzzle of the yeast tolerance to aid the next-generation biocatalyst development.
Collapse
Affiliation(s)
- ZongLin Lewis Liu
- The US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Bioenergy Research Unit, 1815 N University Street, Peoria, IL, 61604, USA.
| |
Collapse
|
22
|
Wu G, Xu Z, Jönsson LJ. Profiling of Saccharomyces cerevisiae transcription factors for engineering the resistance of yeast to lignocellulose-derived inhibitors in biomass conversion. Microb Cell Fact 2017; 16:199. [PMID: 29137634 PMCID: PMC5686817 DOI: 10.1186/s12934-017-0811-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 11/04/2017] [Indexed: 11/24/2022] Open
Abstract
Background Yeast transcription factors (TFs) involved in the regulation of multidrug resistance (MDR) were investigated in experiments with deletion mutants, transformants overexpressing synthetic genes encoding TFs, and toxic concentrations of lignocellulose-derived substances added to cultures as complex mixtures or as specific compounds, viz. coniferyl aldehyde, 5-hydroxymethylfurfural, and furfural. Results In the presence of complex mixtures of toxic substances from spruce wood, transformants overexpressing YAP1 and STB5, TFs involved in oxidative stress response, exhibited enhanced relative growth rates amounting to 4.589 ± 0.261 and 1.455 ± 0.185, respectively. Other TFs identified as important for resistance included DAL81, GZF3, LEU3, PUT3, and WAR1. Potential overlapping functions of YAP1 and STB5 were investigated in experiments with permutations of deletions and overexpression of the two genes. YAP1 complemented STB5 with respect to resistance to 5-hydroxymethylfurfural, but had a distinct role with regard to resistance to coniferyl aldehyde as deletion of YAP1 rendered the cell incapable of resisting coniferyl aldehyde even if STB5 was overexpressed. Conclusions We have investigated 30 deletion mutants and eight transformants overexpressing MDR transcription factors with regard to the roles the transcription factors play in the resistance to toxic concentrations of lignocellulose-derived substances. This work provides an overview of the involvement of thirty transcription factors in the resistance to lignocellulose-derived substances, shows distinct and complementary roles played by YAP1 and STB5, and offers directions for the engineering of robust yeast strains for fermentation processes based on lignocellulosic feedstocks.![]() Electronic supplementary material The online version of this article (10.1186/s12934-017-0811-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guochao Wu
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden.
| | - Zixiang Xu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Leif J Jönsson
- Department of Chemistry, Umeå University, 901 87, Umeå, Sweden
| |
Collapse
|
23
|
Cassells B, Karhumaa K, Sànchez I Nogué V, Lidén G. Hybrid SSF/SHF Processing of SO 2 Pretreated Wheat Straw-Tuning Co-fermentation by Yeast Inoculum Size and Hydrolysis Time. Appl Biochem Biotechnol 2017; 181:536-547. [PMID: 27631121 PMCID: PMC5285423 DOI: 10.1007/s12010-016-2229-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 08/26/2016] [Indexed: 11/11/2022]
Abstract
Wheat straw is one of the main agricultural residues of interest for bioethanol production. This work examines conversion of steam-pretreated wheat straw (using SO2 as a catalyst) in a hybrid process consisting of a short enzymatic prehydrolysis step and a subsequent simultaneous saccharification and fermentation (SSF) step with a xylose-fermenting strain of Saccharomyces cerevisiae. A successful process requires a balanced design of reaction time and temperature in the prehydrolysis step and yeast inoculum size and temperature in the SSF step. The pretreated material obtained after steam pretreatment at 210 °C for 5 min using 2.5 % SO2 (based on moisture content) showed a very good enzymatic digestibility at 45 °C but clearly lower at 30 °C. Furthermore, the pretreatment liquid was found to be rather inhibitory to the yeast, partly due to a furfural content of more than 3 g/L. The effect of varying the yeast inoculum size in this medium was assessed, and at a yeast inoculum size of 4 g/L, a complete conversion of glucose and a 90 % conversion of xylose were obtained within 50 h. An ethanol yield (based on the glucan and xylan in the pretreated material) of 0.39 g/g was achieved for a process with this yeast inoculum size in a hybrid process (10 % water-insoluble solid (WIS)) with 4 h prehydrolysis time and a total process time of 96 h. The obtained xylose conversion was 95 %. A longer prehydrolysis time or a lower yeast inoculum size resulted in incomplete xylose conversion.
Collapse
Affiliation(s)
- B Cassells
- Department of Chemical Engineering, Lund University, Box 124, 221 00, Lund, SE, Sweden
- Novozymes A/S, Krogshoejvej 36, 2880, Bagsvaerd, SE, Denmark
| | - K Karhumaa
- C5 Ligno Technologies in Lund AB, P.O. Box 124, 221 00, Lund, SE, Sweden
- Hansa Medical AB, P.O. Box 785, -220 07, Lund, SE, Sweden
| | - V Sànchez I Nogué
- C5 Ligno Technologies in Lund AB, P.O. Box 124, 221 00, Lund, SE, Sweden
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO, 80401, USA
| | - G Lidén
- Department of Chemical Engineering, Lund University, Box 124, 221 00, Lund, SE, Sweden.
| |
Collapse
|
24
|
Narayanan V, Sànchez i Nogué V, van Niel EWJ, Gorwa-Grauslund MF. Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae. AMB Express 2016; 6:59. [PMID: 27566648 PMCID: PMC5001960 DOI: 10.1186/s13568-016-0234-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Accepted: 08/18/2016] [Indexed: 01/12/2023] Open
Abstract
Lignocellulosic bioethanol from renewable feedstocks using Saccharomyces cerevisiae is a promising alternative to fossil fuels owing to environmental challenges. S. cerevisiae is frequently challenged by bacterial contamination and a combination of lignocellulosic inhibitors formed during the pre-treatment, in terms of growth, ethanol yield and productivity. We investigated the phenotypic robustness of a brewing yeast strain TMB3500 and its ability to adapt to low pH thereby preventing bacterial contamination along with lignocellulosic inhibitors by short-term adaptation and adaptive lab evolution (ALE). The short-term adaptation strategy was used to investigate the inherent ability of strain TMB3500 to activate a robust phenotype involving pre-culturing yeast cells in defined medium with lignocellulosic inhibitors at pH 5.0 until late exponential phase prior to inoculating them in defined media with the same inhibitor cocktail at pH 3.7. Adapted cells were able to grow aerobically, ferment anaerobically (glucose exhaustion by 19 ± 5 h to yield 0.45 ± 0.01 g ethanol g glucose(-1)) and portray significant detoxification of inhibitors at pH 3.7, when compared to non-adapted cells. ALE was performed to investigate whether a stable strain could be developed to grow and ferment at low pH with lignocellulosic inhibitors in a continuous suspension culture. Though a robust population was obtained after 3600 h with an ability to grow and ferment at pH 3.7 with inhibitors, inhibitor robustness was not stable as indicated by the characterisation of the evolved culture possibly due to phenotypic plasticity. With further research, this short-term adaptation and low pH strategy could be successfully applied in lignocellulosic ethanol plants to prevent bacterial contamination.
Collapse
Affiliation(s)
- Venkatachalam Narayanan
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Violeta Sànchez i Nogué
- National Bioenergy Center, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401 USA
| | - Ed W. J. van Niel
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| | - Marie F. Gorwa-Grauslund
- Division of Applied Microbiology, Department of Chemistry, Lund University, P.O. Box 124, 221 00 Lund, Sweden
| |
Collapse
|
25
|
Agu CV, Ujor V, Gopalan V, Ezeji TC. Use of Cupriavidus basilensis-aided bioabatement to enhance fermentation of acid-pretreated biomass hydrolysates by Clostridium beijerinckii. J Ind Microbiol Biotechnol 2016; 43:1215-26. [PMID: 27400988 DOI: 10.1007/s10295-016-1798-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/16/2016] [Indexed: 10/21/2022]
Abstract
Lignocellulose-derived microbial inhibitors (LDMICs) prevent efficient fermentation of Miscanthus giganteus (MG) hydrolysates to fuels and chemicals. To address this problem, we explored detoxification of pretreated MG biomass by Cupriavidus basilensis ATCC(®)BAA-699 prior to enzymatic saccharification. We document three key findings from our test of this strategy to alleviate LDMIC-mediated toxicity on Clostridium beijerinckii NCIMB 8052 during fermentation of MG hydrolysates. First, we demonstrate that growth of C. basilensis is possible on furfural, 5-hydroxymethyfurfural, cinnamaldehyde, 4-hydroxybenzaldehyde, syringaldehyde, vanillin, and ferulic, p-coumaric, syringic and vanillic acid, as sole carbon sources. Second, we report that C. basilensis detoxified and metabolized ~98 % LDMICs present in dilute acid-pretreated MG hydrolysates. Last, this bioabatement resulted in significant payoffs during acetone-butanol-ethanol (ABE) fermentation by C. beijerinckii: 70, 50 and 73 % improvement in ABE concentration, yield and productivity, respectively. Together, our results show that biological detoxification of acid-pretreated MG hydrolysates prior to fermentation is feasible and beneficial.
Collapse
Affiliation(s)
- Chidozie Victor Agu
- Department of Animal Sciences, Ohio State Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | - Victor Ujor
- Renewable Energy Program, Agricultural Technical Institute, The Ohio State University, 1328 Dover Road, Wooster, OH, 44691, USA
| | - Venkat Gopalan
- Department of Chemistry and Biochemistry, Center for RNA Biology, The Ohio State University, 484 West 12th Avenue, Columbus, OH, 43210, USA
| | - Thaddeus Chukwuemeka Ezeji
- Department of Animal Sciences, Ohio State Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA.
| |
Collapse
|
26
|
Lignocellulosic ethanol production by starch-base industrial yeast under PEG detoxification. Sci Rep 2016; 6:20361. [PMID: 26837707 PMCID: PMC4738253 DOI: 10.1038/srep20361] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 12/31/2015] [Indexed: 11/08/2022] Open
Abstract
Cellulosic ethanol production from lignocellulosic biomass offers a sustainable solution for transition from fossil based fuels to renewable alternatives. However, a few long-standing technical challenges remain to be addressed in the development of an economically viable fermentation process from lignocellulose. Such challenges include the needs to improve yeast tolerance to toxic inhibitory compounds and to achieve high fermentation efficiency with minimum detoxification steps after a simple biomass pretreatment. Here we report an in-situ detoxification strategy by PEG exo-protection of an industrial dry yeast (starch-base). The exo-protected yeast cells displayed remarkably boosted vitality with high tolerance to toxic inhibitory compounds, and with largely improved ethanol productivity from crude hydrolysate derived from a pretreated lignocellulose. The PEG chemical exo-protection makes the industrial S. cerevisiae yeast directly applicable for the production of cellulosic ethanol with substantially improved productivity and yield, without of the need to use genetically modified microorganisms.
Collapse
|
27
|
Thompson OA, Hawkins GM, Gorsich SW, Doran-Peterson J. Phenotypic characterization and comparative transcriptomics of evolved Saccharomyces cerevisiae strains with improved tolerance to lignocellulosic derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:200. [PMID: 27679668 PMCID: PMC5029107 DOI: 10.1186/s13068-016-0614-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 09/07/2016] [Indexed: 05/15/2023]
Abstract
BACKGROUND Lignocellulosic biomass continues to be investigated as a viable source for bioethanol production. However, the pretreatment process generates inhibitory compounds that impair the growth and fermentation performance of microorganisms such as Saccharomyces cerevisiae. Pinewood specifically has been shown to be challenging in obtaining industrially relevant ethanol titers. An industrial S. cerevisiae strain was subjected to directed evolution and adaptation in pretreated pine biomass and resultant strains, GHP1 and GHP4, exhibited improved growth and fermentative ability on pretreated pine in the presence of related inhibitory compounds. A comparative transcriptomic approach was applied to identify and characterize differences in phenotypic stability of evolved strains. RESULTS Evolved strains displayed different fermentative capabilities with pretreated pine that appear to be influenced by the addition or absence of 13 inhibitory compounds during pre-culturing. GHP4 performance was consistent independent of culturing conditions, while GHP1 performance was dependent on culturing with inhibitors. Comparative transcriptomics revealed 52 genes potentially associated with stress responses to multiple inhibitors simultaneously. Fluorescence microscopy revealed improved cellular integrity of both strains with mitochondria exhibiting resistance to the damaging effects of inhibitors in contrast to the parent. CONCLUSIONS Multiple potentially novel genetic targets have been discovered for understanding stress tolerance through the characterization of our evolved strains. This study specifically examines the synergistic effects of multiple inhibitors and identified targets will guide future studies in remediating effects of inhibitors and further development of robust yeast strains for multiple industrial applications.
Collapse
Affiliation(s)
| | - Gary M. Hawkins
- Department of Microbiology, University of Georgia, Athens, GA 30602 USA
| | - Steven W. Gorsich
- Department of Biology, Central Michigan University, Mount Pleasant, MI 48859 USA
| | | |
Collapse
|
28
|
Caspeta L, Castillo T, Nielsen J. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes. Front Bioeng Biotechnol 2015; 3:184. [PMID: 26618154 PMCID: PMC4641163 DOI: 10.3389/fbioe.2015.00184] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2015] [Accepted: 10/28/2015] [Indexed: 11/17/2022] Open
Abstract
Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose.
Collapse
Affiliation(s)
- Luis Caspeta
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Tania Castillo
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos , Cuernavaca , Mexico
| | - Jens Nielsen
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , Gothenburg , Sweden ; Department of Biology and Biological Engineering, Chalmers University of Technology , Gothenburg , Sweden ; Novo Nordisk Foundation Center for Biosustainability , Hørsholm , Denmark
| |
Collapse
|
29
|
Cunha JT, Aguiar TQ, Romaní A, Oliveira C, Domingues L. Contribution of PRS3, RPB4 and ZWF1 to the resistance of industrial Saccharomyces cerevisiae CCUG53310 and PE-2 strains to lignocellulosic hydrolysate-derived inhibitors. BIORESOURCE TECHNOLOGY 2015; 191:7-16. [PMID: 25974617 DOI: 10.1016/j.biortech.2015.05.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 05/13/2023]
Abstract
PRS3, RPB4 and ZWF1 were previously identified as key genes for yeast tolerance to lignocellulose-derived inhibitors. To better understand their contribution to yeast resistance to the multiple stresses occurring during lignocellulosic hydrolysate fermentations, we overexpressed these genes in two industrial Saccharomyces cerevisiae strains, CCUG53310 and PE-2, and evaluated their impact on the fermentation of Eucalyptus globulus wood and corn cob hydrolysates. PRS3 overexpression improved the fermentation rate (up to 32%) and productivity (up to 48%) in different hydrolysates. ZWF1 and RPB4 overexpression did not improve the fermentation performance, but their increased expression in the presence of acetic acid, furfural and hydroxymethylfurfural was found to contribute to yeast adaptation to these inhibitors. This study expands our understanding about the molecular mechanisms involved in industrial yeast tolerance to the stresses occurring during lignocellulosic bioethanol production and highlights the importance of selecting appropriate strain backgrounds/hydrolysates combinations when addressing further improvement of these processes.
Collapse
Affiliation(s)
- Joana T Cunha
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Tatiana Q Aguiar
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Aloia Romaní
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Carla Oliveira
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Lucília Domingues
- CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
30
|
Kurosawa K, Laser J, Sinskey AJ. Tolerance and adaptive evolution of triacylglycerol-producing Rhodococcus opacus to lignocellulose-derived inhibitors. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:76. [PMID: 26052344 PMCID: PMC4456722 DOI: 10.1186/s13068-015-0258-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Accepted: 04/29/2015] [Indexed: 05/24/2023]
Abstract
BACKGROUND Lignocellulosic biomass has been investigated as a renewable non-food source for production of biofuels. A significant technical challenge to using lignocellulose is the presence of microbial growth inhibitors generated during pretreatment processes. Triacylglycerols (TAGs) are potential precursors for lipid-based biofuel production. Rhodococcus opacus MITXM-61 is an oleaginous bacterium capable of producing large amounts of TAGs on high concentrations of glucose and xylose present in lignocellulosic hydrolysates. However, this strain is sensitive to ligonocellulose-derived inhibitors. To understand the toxic effects of the inhibitors in lignocellulosic hydrolysates, strain MITXM-61 was examined for tolerance toward the potential inhibitors and was subjected to adaptive evolution for the resistance to the inhibitors. RESULTS We investigated growth-inhibitory effects by potential lignocellulose-derived inhibitors of phenols (lignin, vanillin, 4-hydroxybenzaldehyde (4-HB), syringaldehyde), furans (furfural and 5-hydroxymethyl-2-furaldehyde), and organic acids (levulinic acid, formic acid, and acetic acid) on the growth and TAG production of strain MITXM-61. Phenols and furans exhibited potent inhibitory effects at a concentration of 1 g L(-1), while organic acids had insignificant impacts at concentrations of up to 2 g L(-1). In an attempt to improve the inhibitor tolerance of strain MITXM-61, we evaluated the adaptation of this strain to the potential inhibitors. Adapted mutants were generated on defined agar media containing lignin, 4-HB, and syringaldehyde. Strain MITXM-61(SHL33) with improved multiple resistance of lignin, 4-HB, and syringaldehyde was constructed through adaptive evolution-based strategies. The evolved strain exhibited a two- to threefold increase in resistance to lignin, 4-HB, and syringaldehyde at 50% growth-inhibitory concentrations, compared to the parental strain. When grown in genuine lignocellulosic hydrolysates of corn stover, wheat straw, and hardwood containing growth inhibitors, strain MITXM-61(SHL33) exhibited a markedly shortened lag phase in comparison with that of strain MITXM-61. CONCLUSION This study provides important clues to overcome the negative effects of inhibitors in lignocellulosic hydrolysates on TAG production of R. opacus cells. The findings can contribute to significant progress in detoxified pretreatment of hydrolysates and development of more efficient strains for industrial TAG fermentations of R. opacus using lignocellulosic biomass.
Collapse
Affiliation(s)
- Kazuhiko Kurosawa
- />Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| | - Josephine Laser
- />Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- />Present address: Institute of Biotechnology, Department Applied and Molecular Microbiology Berlin University of Technology, Gustav-Meyer-Allee 25, Berlin, D-13355 Germany
| | - Anthony J Sinskey
- />Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
- />Engineering Systems Division, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 USA
| |
Collapse
|
31
|
Kim SK, Jin YS, Choi IG, Park YC, Seo JH. Enhanced tolerance of Saccharomyces cerevisiae to multiple lignocellulose-derived inhibitors through modulation of spermidine contents. Metab Eng 2015; 29:46-55. [PMID: 25724339 DOI: 10.1016/j.ymben.2015.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 01/06/2015] [Accepted: 02/17/2015] [Indexed: 01/13/2023]
Abstract
Fermentation inhibitors present in lignocellulose hydrolysates are inevitable obstacles for achieving economic production of biofuels and biochemicals by industrial microorganisms. Here we show that spermidine (SPD) functions as a chemical elicitor for enhanced tolerance of Saccharomyces cerevisiae against major fermentation inhibitors. In addition, the feasibility of constructing an engineered S. cerevisiae strain capable of tolerating toxic levels of the major inhibitors without exogenous addition of SPD was explored. Specifically, we altered expression levels of the genes in the SPD biosynthetic pathway. Also, OAZ1 coding for ornithine decarboxylase (ODC) antizyme and TPO1 coding for the polyamine transport protein were disrupted to increase intracellular SPD levels through alleviation of feedback inhibition on ODC and prevention of SPD excretion, respectively. Especially, the strain with combination of OAZ1 and TPO1 double disruption and overexpression of SPE3 not only contained spermidine content of 1.1mg SPD/g cell, which was 171% higher than that of the control strain, but also exhibited 60% and 33% shorter lag-phase period than that of the control strain under the medium containing furan derivatives and acetic acid, respectively. While we observed a positive correlation between intracellular SPD contents and tolerance phenotypes among the engineered strains accumulating different amounts of intracellular SPD, too much SPD accumulation is likely to cause metabolic burden. Therefore, genetic perturbations for intracellular SPD levels should be optimized in terms of metabolic burden and SPD contents to construct inhibitor tolerant yeast strains. We also found that the genes involved in purine biosynthesis and cell wall and chromatin stability were related to the enhanced tolerance phenotypes to furfural. The robust strains constructed in this study can be applied for producing chemicals and advanced biofuels from cellulosic hydrolysates.
Collapse
Affiliation(s)
- Sun-Ki Kim
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - In-Geol Choi
- College of Life sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence, Kookmin University, Seoul 136-702, Republic of Korea
| | - Jin-Ho Seo
- Department of Agricultural Biotechnology and Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea.
| |
Collapse
|
32
|
Ujor V, Agu CV, Gopalan V, Ezeji TC. Allopurinol-mediated lignocellulose-derived microbial inhibitor tolerance by Clostridium beijerinckii during acetone-butanol-ethanol (ABE) fermentation. Appl Microbiol Biotechnol 2015; 99:3729-40. [PMID: 25690312 DOI: 10.1007/s00253-015-6450-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/28/2015] [Accepted: 01/30/2015] [Indexed: 01/18/2023]
Abstract
In addition to glucans, xylans, and arabinans, lignocellulosic biomass hydrolysates contain significant levels of nonsugar components that are toxic to the microbes that are typically used to convert biomass to biofuels and chemicals. To enhance the tolerance of acetone-butanol-ethanol (ABE)-generating Clostridium beijerinckii NCIMB 8052 to these lignocellulose-derived microbial inhibitory compounds (LDMICs; e.g., furfural), we have been examining different metabolic perturbation strategies to increase the cellular reductant pools and thereby facilitate detoxification of LDMICs. As part of these efforts, we evaluated the effect of allopurinol, an inhibitor of NAD(P)H-generating xanthine dehydrogenase (XDH), on C. beijerinckii grown in furfural-supplemented medium and found that it unexpectedly increased the rate of detoxification of furfural by 1.4-fold and promoted growth, butanol, and ABE production by 1.2-, 2.5-, and 2-fold, respectively. Since NAD(P)H/NAD(P)(+) levels in C. beijerinckii were largely unchanged upon allopurinol treatment, we postulated and validated a possible basis in DNA repair to account for the solventogenic gains with allopurinol. Following the observation that supplementation of allopurinol in the C. beijerinckii growth media mitigates the toxic effects of nalidixic acid, a DNA-damaging antibiotic, we found that allopurinol elicited 2.4- and 6.7-fold increase in the messenger RNA (mRNA) levels of xanthine and hypoxanthine phosphoribosyltransferases, key purine-salvage enzymes. Consistent with this finding, addition of inosine (a precursor of hypoxanthine) and xanthine led to 1.4- and 1.7-fold increase in butanol production in furfural-challenged cultures of C. beijerinckii. Taken together, our results provide a purine salvage-based rationale for the unanticipated effect of allopurinol in improving furfural tolerance of the ABE-fermenting C. beijerinckii.
Collapse
Affiliation(s)
- Victor Ujor
- Department of Animal Sciences, The Ohio State University, and Ohio State Agricultural Research and Development Center (OARDC), 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | | | | | | |
Collapse
|
33
|
Li H, Wu M, Xu L, Hou J, Guo T, Bao X, Shen Y. Evaluation of industrial Saccharomyces cerevisiae strains as the chassis cell for second-generation bioethanol production. Microb Biotechnol 2015; 8:266-74. [PMID: 25616171 PMCID: PMC4353340 DOI: 10.1111/1751-7915.12245] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 10/13/2014] [Accepted: 10/22/2014] [Indexed: 11/26/2022] Open
Abstract
To develop a suitable Saccharomyces cerevisiae industrial strain as a chassis cell for ethanol production using lignocellulosic materials, 32 wild-type strains were evaluated for their glucose fermenting ability, their tolerance to the stresses they might encounter in lignocellulosic hydrolysate fermentation and their genetic background for pentose metabolism. The strain BSIF, isolated from tropical fruit in Thailand, was selected out of the distinctly different strains studied for its promising characteristics. The maximal specific growth rate of BSIF was as high as 0.65 h(-1) in yeast extract peptone dextrose medium, and the ethanol yield was 0.45 g g(-1) consumed glucose. Furthermore, compared with other strains, this strain exhibited superior tolerance to high temperature, hyperosmotic stress and oxidative stress; better growth performance in lignocellulosic hydrolysate; and better xylose utilization capacity when an initial xylose metabolic pathway was introduced. All of these results indicate that this strain is an excellent chassis strain for lignocellulosic ethanol production.
Collapse
Affiliation(s)
- Hongxing Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | |
Collapse
|
34
|
Wallace-Salinas V, Signori L, Li YY, Ask M, Bettiga M, Porro D, Thevelein JM, Branduardi P, Foulquié-Moreno MR, Gorwa-Grauslund M. Re-assessment of YAP1 and MCR1 contributions to inhibitor tolerance in robust engineered Saccharomyces cerevisiae fermenting undetoxified lignocellulosic hydrolysate. AMB Express 2014; 4:56. [PMID: 25147754 PMCID: PMC4105880 DOI: 10.1186/s13568-014-0056-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/19/2014] [Indexed: 11/10/2022] Open
Abstract
Development of robust yeast strains that can efficiently ferment lignocellulose-based feedstocks is one of the requirements for achieving economically feasible bioethanol production processes. With this goal, several genes have been identified as promising candidates to confer improved tolerance to S. cerevisiae. In most of the cases, however, the evaluation of the genetic modification was performed only in laboratory strains, that is, in strains that are known to be quite sensitive to various types of stresses. In the present study, we evaluated the effects of overexpressing genes encoding the transcription factor (YAP1) and the mitochondrial NADH-cytochrome b5 reductase (MCR1), either alone or in combination, in an already robust and xylose-consuming industrial strain of S. cerevisiae and evaluated the effect during the fermentation of undiluted and undetoxified spruce hydrolysate. Overexpression of either gene resulted in faster hexose catabolism, but no cumulative effect was observed with the simultaneous overexpression. The improved phenotype of MCR1 overexpression appeared to be related, at least in part, to a faster furaldehyde reduction capacity, indicating that this reductase may have a wider substrate range than previously reported. Unexpectedly a decreased xylose fermentation rate was also observed in YAP1 overexpressing strains and possible reasons behind this phenotype are discussed.
Collapse
|
35
|
Sandström AG, Almqvist H, Portugal-Nunes D, Neves D, Lidén G, Gorwa-Grauslund MF. Saccharomyces cerevisiae: a potential host for carboxylic acid production from lignocellulosic feedstock? Appl Microbiol Biotechnol 2014; 98:7299-318. [DOI: 10.1007/s00253-014-5866-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Revised: 05/28/2014] [Accepted: 05/29/2014] [Indexed: 10/25/2022]
|
36
|
Doğan A, Demirci S, Aytekin AÖ, Şahin F. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production. Appl Biochem Biotechnol 2014; 174:28-42. [PMID: 24908051 DOI: 10.1007/s12010-014-1006-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 05/29/2014] [Indexed: 02/07/2023]
Abstract
Saccharomyces cerevisiae, industrial yeast isolate, has been of great interest in recent years for fuel ethanol production. The ethanol yield and productivity depend on many inhibitory factors during the fermentation process such as temperature, ethanol, compounds released as the result of pretreatment procedures, and osmotic stress. An ideal strain should be able to grow under different stress conditions occurred at different fermentation steps. Development of tolerant yeast strains can be achieved by reprogramming pathways supporting the ethanol metabolism by regulating the energy balance and detoxicification processes. Complex gene interactions should be solved for an in-depth comprehension of the yeast stress tolerance mechanism. Genetic engineering as a powerful biotechnological tool is required to design new strategies for increasing the ethanol fermentation performance. Upregulation of stress tolerance genes by recombinant DNA technology can be a useful approach to overcome inhibitory situations. This review presents the application of several genetic engineering strategies to increase ethanol yield under different stress conditions including inhibitor tolerance, ethanol tolerance, thermotolerance, and osmotolerance.
Collapse
Affiliation(s)
- Ayşegül Doğan
- Department of Genetics and BioEngineering, Faculty of Engineering and Architecture, Yeditepe University, 26 Ağustos Campus, Kayisdagi cad., Kayisdagi, TR-34755, Istanbul, Turkey,
| | | | | | | |
Collapse
|
37
|
Ujor V, Agu CV, Gopalan V, Ezeji TC. Glycerol supplementation of the growth medium enhances in situ detoxification of furfural by Clostridium beijerinckii during butanol fermentation. Appl Microbiol Biotechnol 2014; 98:6511-21. [PMID: 24839212 DOI: 10.1007/s00253-014-5802-8] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Revised: 04/14/2014] [Accepted: 04/27/2014] [Indexed: 01/01/2023]
Abstract
Lignocellulose-derived microbial inhibitors such as furfural and 5-hydroxymethyl furfural adversely affect fermentation of lignocellulosic biomass hydrolysates to fuels and chemicals due to their toxicity on fermenting microbes. To harness the potential of lignocellulose as a cheap source of fermentable sugars, in situ detoxification of furfural and other lignocellulose-derived microbial inhibitors is essential. To enhance in situ detoxification and tolerance of furfural by Clostridium beijerinckii NCIMB 8052 during acetone-butanol-ethanol (ABE) fermentation, the effect of glycerol on NADH/NADPH generation and ABE production by furfural (4, 5, and 6 g/L)-challenged cultures was investigated in this study. In all instances, beneficial outcomes were observed. For example, the fermentation medium supplemented with glycerol and subjected to 5 g/L furfural elicited up to 1.8- and 3-fold increases, respectively, in NADH and NADPH levels in C. beijerinckii 8052 relative to the control culture. These critical changes are the likely underpinnings for the glycerol-mediated 2.3-fold increase in the rate of detoxification of 5 g/L furfural, substrate consumption, and ABE production compared to the unsupplemented medium. Collectively, these results demonstrate that increased intracellular NADH/NADPH in C. beijerinckii 8052 due to glycerol utilization engenders favorable effects on many aspects of cellular metabolism, including enhanced furfural reduction and increased ABE production.
Collapse
Affiliation(s)
- Victor Ujor
- Department of Animal Sciences and Ohio State Agricultural Research and Development Center (OARDC), The Ohio State University, 305 Gerlaugh Hall, 1680 Madison Avenue, Wooster, OH, 44691, USA
| | | | | | | |
Collapse
|
38
|
Lv YJ, Wang X, Ma Q, Bai X, Li BZ, Zhang W, Yuan YJ. Proteomic analysis reveals complex metabolic regulation in Saccharomyces cerevisiae cells against multiple inhibitors stress. Appl Microbiol Biotechnol 2014; 98:2207-21. [PMID: 24442506 DOI: 10.1007/s00253-014-5519-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 12/20/2013] [Accepted: 12/28/2013] [Indexed: 11/24/2022]
Abstract
Toxic compounds including acids, furans, and phenols (AFP) were generated from the pretreatment of lignocellulose. We cultivated Saccharomyces cerevisiae cells in a batch mode, besides the cell culture of original yeast strain in AFP-free medium which was referred as C0, three independent subcultures were cultivated under multiple inhibitors AFP and were referred as C1, C2, and C3 in time sequence. Comparing to C0, the cell density was lowered while the ethanol yield was maintained stably in the three yeast cultures under AFP stress, and the lag phase of C1 was extended while the lag phases of C2 and C3 were not extended. In proteomic analysis, 194 and 215 unique proteins were identified as differently expressed proteins at lag phase and exponential phase, respectively. Specifically, the yeast cells co-regulated protein folding and protein synthesis process to prevent the generation of misfolded proteins and to save cellular energy, they increased the activity of glycolysis, redirected metabolic flux towards phosphate pentose pathway and the biosynthesis of ethanol instead of the biosynthesis of glycerol and acetic acid, and they upregulated several oxidoreductases especially at lag phase and induced programmed cell death at exponential phase. When the yeast cells were cultivated under AFP stress, the new metabolism homeostasis in favor of cellular energy and redox homeostasis was generated in C1, then it was inherited and optimized in C2 and C3, enabling the yeast cells in C2 and C3 to enter the exponential phase in a short period after inoculation, which thus significantly shortened the fermentation time.
Collapse
Affiliation(s)
- Ya-Jin Lv
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
39
|
Alcohol dehydrogenases from Scheffersomyces stipitis involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion. Appl Microbiol Biotechnol 2013; 97:8411-25. [PMID: 23912116 DOI: 10.1007/s00253-013-5110-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/03/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
Aldehyde inhibitors such as furfural and 5-hydroxymethylfurfural (HMF) are generated from biomass pretreatment. Scheffersomyces stipitis is able to reduce furfural and HMF to less toxic furanmethanol and furan-2,5-dimethanol; however, the enzymes involved in the reductive reaction still remain unknown. In this study, transcription responses of two known and five putative alcohol dehydrogenase genes from S. stipitis were analyzed under furfural and HMF stress conditions. All the seven alcohol dehydrogenase genes were also cloned and overexpressed for their activity analyses. Our results indicate that transcriptions of SsADH4 and SsADH6 were highly induced under furfural and HMF stress conditions, and the proteins encoded by them exhibited NADH- and/or NADPH-dependent activities for furfural and HMF reduction, respectively. For furfural reduction, NADH-dependent activity was also observed in SsAdh1p and NAD(P)H-dependent activities were also observed in SsAdh5p and SsAdh7p. For HMF reduction, NADPH-dependent activities were also observed in SsAdh5p and SsAdh7p. SsAdh4p displayed the highest NADPH-dependent specific activity and catalytic efficiency for reduction of both furfural and HMF among the seven alcohol dehydrogenases. Enzyme activities of all SsADH proteins were more stable under acidic condition. For most SsADH proteins, the optimum temperature for enzyme activities was 30 °C and more than 50 % enzyme activities remained at 60 °C. Reduction activities of formaldehyde, acetaldehyde, isovaleraldehyde, benzaldehyde, and phenylacetaldehyde were also observed in some SsADH proteins. Our results indicate that multiple alcohol dehydrogenases in S. stipitis are involved in the detoxification of aldehyde inhibitors derived from lignocellulosic biomass conversion.
Collapse
|
40
|
Roles of the Yap1 transcription factor and antioxidants in Saccharomyces cerevisiae's tolerance to furfural and 5-hydroxymethylfurfural, which function as thiol-reactive electrophiles generating oxidative stress. Appl Environ Microbiol 2013; 79:5069-77. [PMID: 23793623 DOI: 10.1128/aem.00643-13] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Development of the tolerance of Saccharomyces cerevisiae strains to furfural and 5-hydroxymethylfurfural (HMF) is an important issue for cellulosic ethanol production. Although furfural and HMF are known to induce oxidative stress, the underlying mechanisms are largely unknown. In this study, we show that both furfural and HMF act as thiol-reactive electrophiles, thus directly activating the Yap1 transcription factor via the H2O2-independent pathway, depleting cellular glutathione (GSH) levels, and accumulating reactive oxygen species in Saccharomyces cerevisiae. However, furfural showed higher reactivity than did HMF toward GSH in vitro and in vivo. In line with such toxic mechanisms, overexpression of YAP1(C620F), a constitutively active mutant of YAP1, and Yap1 target genes encoding catalases (CTA1 and CTT1) increased tolerance to furfural and HMF. However, increasing GSH levels by overexpression of genes for GSH biosynthesis (GSH1 and GLR1) or by the exogenous addition of GSH to the culture medium enhanced tolerance to furfural but not to HMF.
Collapse
|
41
|
Ask M, Bettiga M, Mapelli V, Olsson L. The influence of HMF and furfural on redox-balance and energy-state of xylose-utilizing Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:22. [PMID: 23409974 PMCID: PMC3598934 DOI: 10.1186/1754-6834-6-22] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 02/12/2013] [Indexed: 05/13/2023]
Abstract
BACKGROUND Pretreatment of biomass for lignocellulosic ethanol production generates compounds that can inhibit microbial metabolism. The furan aldehydes hydroxymethylfurfural (HMF) and furfural have received increasing attention recently. In the present study, the effects of HMF and furfural on redox metabolism, energy metabolism and gene expression were investigated in anaerobic chemostats where the inhibitors were added to the feed-medium. RESULTS By cultivating the xylose-utilizing Saccharomyces cerevisiae strain VTT C-10883 in the presence of HMF and furfural, it was found that the intracellular concentrations of the redox co-factors and the catabolic and anabolic reduction charges were significantly lower in the presence of furan aldehydes than in cultivations without inhibitors. The catabolic reduction charge decreased from 0.13(±0.005) to 0.08(±0.002) and the anabolic reduction charge decreased from 0.46(±0.11) to 0.27(±0.02) when HMF and furfural were present. The intracellular ATP concentration was lower when inhibitors were added, but resulted only in a modest decrease in the energy charge from 0.87(±0.002) to 0.85(±0.004) compared to the control. Transcriptome profiling followed by MIPS functional enrichment analysis of up-regulated genes revealed that the functional group "Cell rescue, defense and virulence" was over-represented when inhibitors were present compared to control cultivations. Among these, the ATP-binding efflux pumps PDR5 and YOR1 were identified as important for inhibitor efflux and possibly a reason for the lower intracellular ATP concentration in stressed cells. It was also found that genes involved in pseudohyphal growth were among the most up-regulated when inhibitors were present in the feed-medium suggesting nitrogen starvation. Genes involved in amino acid metabolism, glyoxylate cycle, electron transport and amino acid transport were enriched in the down-regulated gene set in response to HMF and furfural. It was hypothesized that the HMF and furfural-induced NADPH drainage could influence ammonia assimilation and thereby give rise to the nitrogen starvation response in the form of pseudohyphal growth and down-regulation of amino acid synthesis. CONCLUSIONS The redox metabolism was severely affected by HMF and furfural while the effects on energy metabolism were less evident, suggesting that engineering of the redox system represents a possible strategy to develop more robust strains for bioethanol production.
Collapse
Affiliation(s)
- Magnus Ask
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Maurizio Bettiga
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Valeria Mapelli
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Chemical and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, SE-41296, Gothenburg, Sweden
| |
Collapse
|
42
|
Jönsson LJ, Alriksson B, Nilvebrant NO. Bioconversion of lignocellulose: inhibitors and detoxification. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:16. [PMID: 23356676 PMCID: PMC3574029 DOI: 10.1186/1754-6834-6-16] [Citation(s) in RCA: 611] [Impact Index Per Article: 55.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 01/16/2013] [Indexed: 05/17/2023]
Abstract
Bioconversion of lignocellulose by microbial fermentation is typically preceded by an acidic thermochemical pretreatment step designed to facilitate enzymatic hydrolysis of cellulose. Substances formed during the pretreatment of the lignocellulosic feedstock inhibit enzymatic hydrolysis as well as microbial fermentation steps. This review focuses on inhibitors from lignocellulosic feedstocks and how conditioning of slurries and hydrolysates can be used to alleviate inhibition problems. Novel developments in the area include chemical in-situ detoxification by using reducing agents, and methods that improve the performance of both enzymatic and microbial biocatalysts.
Collapse
Affiliation(s)
- Leif J Jönsson
- Department of Chemistry, Umeå University, Umeå SE-901 87, Sweden
| | - Björn Alriksson
- Processum Biorefinery Initiative AB, Örnsköldsvik, SE-891 22, Sweden
| | | |
Collapse
|
43
|
Encapsulation-induced stress helps Saccharomyces cerevisiae resist convertible Lignocellulose derived inhibitors. Int J Mol Sci 2012; 13:11881-11894. [PMID: 23109889 PMCID: PMC3472781 DOI: 10.3390/ijms130911881] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/24/2012] [Accepted: 09/04/2012] [Indexed: 11/17/2022] Open
Abstract
The ability of macroencapsulated Saccharomyces cerevisiae CBS8066 to withstand readily and not readily in situ convertible lignocellulose-derived inhibitors was investigated in anaerobic batch cultivations. It was shown that encapsulation increased the tolerance against readily convertible furan aldehyde inhibitors and to dilute acid spruce hydrolysate, but not to organic acid inhibitors that cannot be metabolized anaerobically. Gene expression analysis showed that the protective effect arising from the encapsulation is evident also on the transcriptome level, as the expression of the stress-related genes YAP1, ATR1 and FLR1 was induced upon encapsulation. The transcript levels were increased due to encapsulation already in the medium without added inhibitors, indicating that the cells sensed low stress level arising from the encapsulation itself. We present a model, where the stress response is induced by nutrient limitation, that this helps the cells to cope with the increased stress added by a toxic medium, and that superficial cells in the capsules degrade convertible inhibitors, alleviating the inhibition for the cells deeper in the capsule.
Collapse
|
44
|
Jun H, Kieselbach T, Jönsson LJ. Comparative proteome analysis of Saccharomyces cerevisiae: a global overview of in vivo targets of the yeast activator protein 1. BMC Genomics 2012; 13:230. [PMID: 22681880 PMCID: PMC3476450 DOI: 10.1186/1471-2164-13-230] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Accepted: 04/03/2012] [Indexed: 12/16/2022] Open
Abstract
Background The activity of the yeast activator protein 1 (Yap1p) increases under stress conditions, which leads to enhanced transcription of a number of genes encoding protective enzymes or other proteins. To obtain a global overview of changes in expression of Yap1p-targeted proteins, we compared a Yap1p-overexpressing transformant with a control transformant by triplicate analysis of the proteome using two-dimensional gel electrophoresis (2-DE). Proteins of interest were identified using MALDI-MS or LC-MS/MS. Results The relative quantities of 55 proteins were elevated significantly upon overexpression of Yap1p, and most of these proteins were found to have a Yap1p-binding site upstream of their coding sequences. Interestingly, the main metabolic enzymes in the glycolysis and pyruvate-ethanol pathways showed a significant increase in the Yap1p-overexpressing transformant. Moreover, a comparison of our proteome data with transcriptome data from the literature suggested which proteins were regulated at the level of the proteome, and which proteins were regulated at the level of the transcriptome. Eight proteins involved in stress response, including seven heat-shock and chaperone proteins, were significantly more abundant in the Yap1p-overexpressing transformant. Conclusions We have investigated the general protein composition in Yap1p-overexpressing S. cerevisiae using proteomic techniques, and quantified the changes in the expression of the potential Yap1p-targeted proteins. Identification of the potential Yap1p targets and analysis of their role in cellular processes not only give a global overview of the ubiquitous cellular changes elicited by Yap1p, but also provide the framework for understanding the mechanisms behind Yap1p-regulated stress response in yeast.
Collapse
Affiliation(s)
- He Jun
- Department of Chemistry, Umeå University, Sweden
| | | | | |
Collapse
|
45
|
Laluce C, Schenberg ACG, Gallardo JCM, Coradello LFC, Pombeiro-Sponchiado SR. Advances and Developments in Strategies to Improve Strains of Saccharomyces cerevisiae and Processes to Obtain the Lignocellulosic Ethanol−A Review. Appl Biochem Biotechnol 2012; 166:1908-26. [DOI: 10.1007/s12010-012-9619-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
46
|
Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol 2011; 90:809-25. [DOI: 10.1007/s00253-011-3167-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Revised: 12/16/2010] [Accepted: 02/09/2011] [Indexed: 10/18/2022]
|
47
|
Almeida JRM, Runquist D, Sànchez i Nogué V, Lidén G, Gorwa-Grauslund MF. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J 2011; 6:286-99. [PMID: 21305697 DOI: 10.1002/biot.201000301] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 12/17/2010] [Accepted: 12/20/2010] [Indexed: 11/09/2022]
Abstract
Conversion of agricultural residues, energy crops and forest residues into bioethanol requires hydrolysis of the biomass and fermentation of the released sugars. During the hydrolysis of the hemicellulose fraction, substantial amounts of pentose sugars, in particular xylose, are released. Fermentation of these pentose sugars to ethanol by engineered Saccharomyces cerevisiae under industrial process conditions is the subject of this review. First, fermentation challenges originating from the main steps of ethanol production from lignocellulosic feedstocks are discussed, followed by genetic modifications that have been implemented in S. cerevisiae to obtain xylose and arabinose fermenting capacity per se. Finally, the fermentation of a real lignocellulosic medium is discussed in terms of inhibitory effects of furaldehydes, phenolics and weak acids and the presence of contaminating microbiota.
Collapse
Affiliation(s)
- João R M Almeida
- Applied Microbiology, Lund University, Lund, Sweden; EMBRAPA Agroenergy, PqEB, Brasilia, 70770-901 DF, Brazil
| | | | | | | | | |
Collapse
|
48
|
Current awareness on yeast. Yeast 2010. [DOI: 10.1002/yea.1718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|