1
|
Jiang Y, Rex DA, Schuster D, Neely BA, Rosano GL, Volkmar N, Momenzadeh A, Peters-Clarke TM, Egbert SB, Kreimer S, Doud EH, Crook OM, Yadav AK, Vanuopadath M, Hegeman AD, Mayta M, Duboff AG, Riley NM, Moritz RL, Meyer JG. Comprehensive Overview of Bottom-Up Proteomics Using Mass Spectrometry. ACS MEASUREMENT SCIENCE AU 2024; 4:338-417. [PMID: 39193565 PMCID: PMC11348894 DOI: 10.1021/acsmeasuresciau.3c00068] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/03/2024] [Accepted: 05/03/2024] [Indexed: 08/29/2024]
Abstract
Proteomics is the large scale study of protein structure and function from biological systems through protein identification and quantification. "Shotgun proteomics" or "bottom-up proteomics" is the prevailing strategy, in which proteins are hydrolyzed into peptides that are analyzed by mass spectrometry. Proteomics studies can be applied to diverse studies ranging from simple protein identification to studies of proteoforms, protein-protein interactions, protein structural alterations, absolute and relative protein quantification, post-translational modifications, and protein stability. To enable this range of different experiments, there are diverse strategies for proteome analysis. The nuances of how proteomic workflows differ may be challenging to understand for new practitioners. Here, we provide a comprehensive overview of different proteomics methods. We cover from biochemistry basics and protein extraction to biological interpretation and orthogonal validation. We expect this Review will serve as a handbook for researchers who are new to the field of bottom-up proteomics.
Collapse
Affiliation(s)
- Yuming Jiang
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Devasahayam Arokia
Balaya Rex
- Center for
Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Dina Schuster
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
- Department
of Biology, Institute of Molecular Biology
and Biophysics, ETH Zurich, Zurich 8093, Switzerland
- Laboratory
of Biomolecular Research, Division of Biology and Chemistry, Paul Scherrer Institute, Villigen 5232, Switzerland
| | - Benjamin A. Neely
- Chemical
Sciences Division, National Institute of
Standards and Technology, NIST, Charleston, South Carolina 29412, United States
| | - Germán L. Rosano
- Mass
Spectrometry
Unit, Institute of Molecular and Cellular
Biology of Rosario, Rosario, 2000 Argentina
| | - Norbert Volkmar
- Department
of Biology, Institute of Molecular Systems
Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Amanda Momenzadeh
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Trenton M. Peters-Clarke
- Department
of Pharmaceutical Chemistry, University
of California—San Francisco, San Francisco, California, 94158, United States
| | - Susan B. Egbert
- Department
of Chemistry, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| | - Simion Kreimer
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| | - Emma H. Doud
- Center
for Proteome Analysis, Indiana University
School of Medicine, Indianapolis, Indiana, 46202-3082, United States
| | - Oliver M. Crook
- Oxford
Protein Informatics Group, Department of Statistics, University of Oxford, Oxford OX1 3LB, United
Kingdom
| | - Amit Kumar Yadav
- Translational
Health Science and Technology Institute, NCR Biotech Science Cluster 3rd Milestone Faridabad-Gurgaon
Expressway, Faridabad, Haryana 121001, India
| | | | - Adrian D. Hegeman
- Departments
of Horticultural Science and Plant and Microbial Biology, University of Minnesota, Twin Cities, Minnesota 55108, United States
| | - Martín
L. Mayta
- School
of Medicine and Health Sciences, Center for Health Sciences Research, Universidad Adventista del Plata, Libertador San Martin 3103, Argentina
- Molecular
Biology Department, School of Pharmacy and Biochemistry, Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Anna G. Duboff
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Nicholas M. Riley
- Department
of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Robert L. Moritz
- Institute
for Systems biology, Seattle, Washington 98109, United States
| | - Jesse G. Meyer
- Department
of Computational Biomedicine, Cedars Sinai
Medical Center, Los Angeles, California 90048, United States
- Smidt Heart
Institute, Cedars Sinai Medical Center, Los Angeles, California 90048, United States
- Advanced
Clinical Biosystems Research Institute, Cedars Sinai Medical Center, Los
Angeles, California 90048, United States
| |
Collapse
|
2
|
Fab fragment immobilized immunoaffinity cryogels as a tool for human serum albumin purification: Characterization of Fab immobilized cryogels. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1203:123311. [DOI: 10.1016/j.jchromb.2022.123311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 05/21/2022] [Accepted: 05/23/2022] [Indexed: 10/18/2022]
|
3
|
Kuşat K, Bağlamış S, Kuru Cİ, Ulucan F, Uygun M, Akgöl S. p(HEMA)-RR241 hydrogel membranes with micron network for IgG depletion in proteomic studies. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:1181-1197. [PMID: 35192441 DOI: 10.1080/09205063.2022.2045666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/12/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Serum proteins can generally be considered a good source for the illness' indication and are precious resources to detect diseases such as inflammation, cancer, diabetes, malnutrition, cardiovascular diseases, Alzheimer's, other autoimmune diseases, and infections. However, one of the biggest difficulties for proteomic studies is that the majority of serum protein mass consists of only a few proteins. Albumin and Immunoglobulin (IgG) constitute 80% of total serum protein. In this study, dye ligand affinity-based hydrogel membranes were proposed as new materials with micron mesh structures. Micron mesh p(HEMA) hydrogel membranes were synthesized by using the UV-photopolymerization method, then modified with Reactive Red 241 (RR241) dye ligand to increase the affinity towards IgG. Characterizations of synthesized micron mesh p(HEMA)-RR241 hydrogel membranes were also performed. It was demonstrated by the characterization studies that; the dye was successfully incorporated into the membrane structure with the amount of 119.38 mg/g. The hydrophilic property of the hydrogel membrane was demonstrated by swelling tests and the swelling value of dye modified membrane was found to be 8 times higher than that of the plain membrane. Micron network structure, as well as the porosity, were demonstrated with SEM/ESEM studies. Optimization of IgG adsorption conditions was also studied at different parameters (pH, temperature, ion strength, initial IgG concentration). Optimum pH, temperature, and ionic strength were found to be 6.5, 25 °C, 0.05 M, respectively, and the maximum IgG absorption value was 10.27 mg/g. Finally, it was shown that the proposed materials can be used repeatedly by 5 adsorption-desorption cycles.
Collapse
Affiliation(s)
- Kevser Kuşat
- Chemistry Department, Faculty of Science, Dokuz Eylül University, Izmir, Turkey
| | - Selami Bağlamış
- Biochemistry Department, Faculty of Science, Ege University, Izmir, Turkey
| | - Cansu İlke Kuru
- Biochemistry Department, Faculty of Science, Ege University, Izmir, Turkey
| | - Fulden Ulucan
- Biochemistry Department, Faculty of Science, Ege University, Izmir, Turkey
| | - Murat Uygun
- Chemistry Department, Faculty of Science and Arts, Adnan Menderes University, Aydın, Turkey
| | - Sinan Akgöl
- Biochemistry Department, Faculty of Science, Ege University, Izmir, Turkey
| |
Collapse
|
4
|
Tamahkar E. Bacterial cellulose/poly vinyl alcohol based wound dressings with sustained antibiotic delivery. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-021-01631-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
5
|
El-Shishtawy RM, Mohamed SA, Asiri AM, Ahmed NS. Synthesis of hemicyanine-based chitosan ligands in dye-affinity chromatography for the purification of chewing stick peroxidase. Int J Biol Macromol 2020; 148:401-414. [DOI: 10.1016/j.ijbiomac.2020.01.088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 11/26/2022]
|
6
|
Plasma/serum proteomics: depletion strategies for reducing high-abundance proteins for biomarker discovery. Bioanalysis 2019; 11:1799-1812. [PMID: 31617391 DOI: 10.4155/bio-2019-0145] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plasma and serum are widely used for proteomics-based biomarker discovery. However, analysis of these biofluids is highly challenging due to the complexity and wide dynamic range of their proteomes. Notably, highly abundant proteins tend to obscure the detection of potential biomarkers that are usually of lower concentrations. Among the strategies to resolve this problem are: depletion of high-abundance proteins, enrichment of low abundant proteins of interest and prefractionation. In this review, we focus on current and emerging depletion techniques used to enhance the detection and identification of the less abundant proteins in plasma and serum. We discuss the applications and contributions of these methods to proteomics analysis of plasma and serum alongside their limitations and future perspectives.
Collapse
|
7
|
Purification of lysozyme from chicken egg white using nanofiber membrane immobilized with Reactive Orange 4 dye. Int J Biol Macromol 2019; 134:458-468. [DOI: 10.1016/j.ijbiomac.2019.05.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 11/21/2022]
|
8
|
Molecularly imprinted composite bacterial cellulose nanofibers for antibiotic release. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:450-461. [DOI: 10.1080/09205063.2019.1580665] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
9
|
Göktürk I, Tamahkar E, Yılmaz F, Denizli A. Protein depletion with bacterial cellulose nanofibers. J Chromatogr B Analyt Technol Biomed Life Sci 2018; 1099:1-9. [DOI: 10.1016/j.jchromb.2018.08.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 06/25/2018] [Accepted: 08/26/2018] [Indexed: 10/28/2022]
|
10
|
Bakhshpour M, Tamahkar E, Andaç M, Denizli A. Surface imprinted bacterial cellulose nanofibers for hemoglobin purification. Colloids Surf B Biointerfaces 2017; 158:453-459. [DOI: 10.1016/j.colsurfb.2017.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 07/06/2017] [Accepted: 07/07/2017] [Indexed: 01/26/2023]
|
11
|
Affinity binding of proteins to the modified bacterial cellulose nanofibers. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1052:121-127. [DOI: 10.1016/j.jchromb.2017.03.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/17/2017] [Accepted: 03/22/2017] [Indexed: 02/06/2023]
|
12
|
Büyüktiryaki S, Uzun L, Denizli A, Say R, Ersöz A. Simultaneous depletion of albumin and immunoglobulin G by using twin affinity magnetic nanotraps. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1200086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sibel Büyüktiryaki
- BİBAM (Plant, Drug and Scientific Researches Center), Anadolu University, Eskişehir, Turkey
| | - Lokman Uzun
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey
| | - Rıdvan Say
- Department of Chemistry, Anadolu University, Eskişehir, Turkey
| | - Arzu Ersöz
- Department of Chemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
13
|
Tamahkar E, Kutsal T, Denizli A. Surface imprinted bacterial cellulose nanofibers for cytochrome c purification. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.09.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
14
|
Baydemir G, Andaç M, Perçin I, Derazshamshir A, Denizli A. Molecularly imprinted composite cryogels for hemoglobin depletion from human blood. J Mol Recognit 2015; 27:528-36. [PMID: 25042707 DOI: 10.1002/jmr.2376] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 02/12/2014] [Accepted: 03/20/2014] [Indexed: 11/06/2022]
Abstract
A molecularly imprinted composite cryogel (MICC) was prepared for depletion of hemoglobin from human blood prior to use in proteome applications. Poly(hydroxyethyl methacrylate) based MICC was prepared with high gel fraction yields up to 90%, and characterized by Fourier transform infrared spectrophotometer, scanning electron microscopy, swelling studies, flow dynamics and surface area measurements. MICC exhibited a high binding capacity and selectivity for hemoglobin in the presence of immunoglobulin G, albumin and myoglobin. MICC column was successfully applied in fast protein liquid chromatography system for selective depletion of hemoglobin for human blood. The depletion ratio was highly increased by embedding microspheres into the cryogel (93.2%). Finally, MICC can be reused many times with no apparent decrease in hemoglobin adsorption capacity.
Collapse
Affiliation(s)
- Gözde Baydemir
- Department of Chemistry, Biochemistry Division, Hacettepe University, Ankara, Turkey
| | | | | | | | | |
Collapse
|
15
|
Rajwade JM, Paknikar KM, Kumbhar JV. Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 2015; 99:2491-511. [PMID: 25666681 DOI: 10.1007/s00253-015-6426-3] [Citation(s) in RCA: 165] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 01/21/2015] [Accepted: 01/21/2015] [Indexed: 12/13/2022]
Abstract
Bacterial cellulose produced by few but specific microbial genera is an extremely pure natural exopolysaccharide. Besides providing adhesive properties and a competitive advantage to the cellulose over-producer, bacterial cellulose confers UV protection, ensures maintenance of an aerobic environment, retains moisture, protects against heavy metal stress, etc. This unique nanostructured matrix is being widely explored for various medical and nonmedical applications. It can be produced in various shapes and forms because of which it finds varied uses in biomedicine. The attributes of bacterial cellulose such as biocompatibility, haemocompatibility, mechanical strength, microporosity and biodegradability with its unique surface chemistry make it ideally suited for a plethora of biomedical applications. This review highlights these qualities of bacterial cellulose in detail with emphasis on reports that prove its utility in biomedicine. It also gives an in-depth account of various biomedical applications ranging from implants and scaffolds for tissue engineering, carriers for drug delivery, wound-dressing materials, etc. that are reported until date. Besides, perspectives on limitations of commercialisation of bacterial cellulose have been presented. This review is also an update on the variety of low-cost substrates used for production of bacterial cellulose and its nonmedical applications and includes patents and commercial products based on bacterial cellulose.
Collapse
Affiliation(s)
- J M Rajwade
- Centre for Nanobioscience, Agharkar Research Institute, G. G. Agarkar Road, Pune, 411 004, India,
| | | | | |
Collapse
|
16
|
Zhu J, Sun G. Bio-functionalized nanofibrous membranes as a hybrid platform for selective antibody recognition and capturing. RSC Adv 2015. [DOI: 10.1039/c5ra01140j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PVA-co-PE nanofibers were activatedviaversatile surface chemistries to achieve protein ligand couplings and subsequent antibody recognition and capturing.
Collapse
Affiliation(s)
- Jing Zhu
- Fiber and Polymer Science
- University of California
- Davis
- USA
| | - Gang Sun
- Fiber and Polymer Science
- University of California
- Davis
- USA
| |
Collapse
|
17
|
Laçin NT. Development of biodegradable antibacterial cellulose based hydrogel membranes for wound healing. Int J Biol Macromol 2014; 67:22-7. [DOI: 10.1016/j.ijbiomac.2014.03.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 02/26/2014] [Accepted: 03/03/2014] [Indexed: 11/25/2022]
|
18
|
Andaç M, Denizli A. Affinity-recognition-based polymeric cryogels for protein depletion studies. RSC Adv 2014. [DOI: 10.1039/c4ra02655a] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Supermacroporous cryogels can be used for the depletion of highly abundant proteins prior to proteome investigations.
Collapse
Affiliation(s)
- Müge Andaç
- Department of Chemistry
- Biochemistry Division
- Hacettepe University
- Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry
- Biochemistry Division
- Hacettepe University
- Ankara, Turkey
| |
Collapse
|
19
|
Gökay Ö, Karakoç V, Andaç M, Türkmen D, Denizli A. Dye-attached magnetic poly(hydroxyethyl methacrylate) nanospheres for albumin depletion from human plasma. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2013; 43:62-70. [PMID: 24093765 DOI: 10.3109/21691401.2013.841172] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The selective binding of albumin on dye-affinity nanospheres was combined with magnetic properties as an alternative approach for albumin depletion from human plasma. Magnetic poly(hydroxyethyl methacrylate) (mPHEMA) nanospheres were synthesized using mini-emulsion polymerization method in the presence of magnetite powder. The specific surface area of the mPHEMA nanospheres was found to be 1302 m(2)/g. Subsequent to Cibacron Blue F3GA (CB) immobilization onto mPHEMA nanospheres, a serial characterization processing was implemented. The quantity of immobilized CB was calculated as 800 μmol/g. Ultimately, albumin adsorption performance of the CB-attached mPHEMA nanospheres from both aqueous dissolving medium and human plasma were explored.
Collapse
Affiliation(s)
- Öznur Gökay
- Division of Biochemistry, Department of Chemistry, Hacettepe University , Ankara , Turkey
| | | | | | | | | |
Collapse
|
20
|
Reversible Immobilization of Urease by Using Bacterial Cellulose Nanofibers. Appl Biochem Biotechnol 2013; 171:2285-94. [DOI: 10.1007/s12010-013-0541-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 09/15/2013] [Indexed: 10/26/2022]
|
21
|
Zhong C, Zhang GC, Liu M, Zheng XT, Han PP, Jia SR. Metabolic flux analysis of Gluconacetobacter xylinus for bacterial cellulose production. Appl Microbiol Biotechnol 2013; 97:6189-99. [PMID: 23640364 DOI: 10.1007/s00253-013-4908-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/21/2013] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
Metabolic flux analysis was used to reveal the metabolic distributions in Gluconacetobacter xylinus (CGMCC no. 2955) cultured on different carbon sources. Compared with other sources, glucose, fructose, and glycerol could achieve much higher bacterial cellulose (BC) yields from G. xylinus (CGMCC no. 2955). The glycerol led to the highest BC production with a metabolic yield of 14.7 g/mol C, which was approximately 1.69-fold and 2.38-fold greater than that produced using fructose and glucose medium, respectively. The highest BC productivity from G. xylinus CGMCC 2955 was 5.97 g BC/L (dry weight) when using glycerol as the sole carbon source. Metabolic flux analysis for the central carbon metabolism revealed that about 47.96 % of glycerol was transformed into BC, while only 19.05 % of glucose and 24.78 % of fructose were transformed into BC. Instead, when glucose was used as the sole carbon source, 40.03 % of glucose was turned into the by-product gluconic acid. Compared with BC from glucose and fructose, BC from the glycerol medium showed the highest tensile strength at 83.5 MPa, with thinner fibers and lower porosity. As a main byproduct of biodiesel production, glycerol holds great potential to produce BC with superior mechanical and microstructural characteristics.
Collapse
Affiliation(s)
- Cheng Zhong
- Key Laboratory of Industrial Fermentation Microbiology-Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | | | | | | | | | | |
Collapse
|
22
|
Doğan A, Özkara S, Sarı MM, Uzun L, Denizli A. Evaluation of human interferon adsorption performance of Cibacron Blue F3GA attached cryogels and interferon purification by using FPLC system. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:69-76. [DOI: 10.1016/j.jchromb.2012.02.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 11/27/2022]
|
23
|
Zhu J, Yang J, Sun G. Cibacron Blue F3GA functionalized poly(vinyl alcohol-co-ethylene) (PVA-co-PE) nanofibrous membranes as high efficient affinity adsorption materials. J Memb Sci 2011. [DOI: 10.1016/j.memsci.2011.10.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Altıntas EB, Türkmen D, Karakoç V, Denizli A. Hemoglobin binding from human blood hemolysate with poly(glycidyl methacrylate) beads. Colloids Surf B Biointerfaces 2011; 85:235-40. [DOI: 10.1016/j.colsurfb.2011.02.034] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 02/24/2011] [Accepted: 02/24/2011] [Indexed: 11/27/2022]
|