1
|
Morganti L, Chura-Chambi RM. Using High Pressure and Alkaline pH for Refolding. Methods Mol Biol 2023; 2617:177-187. [PMID: 36656524 DOI: 10.1007/978-1-0716-2930-7_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The expression of recombinant proteins as insoluble inclusion bodies (IB) has the advantage to separate insoluble aggregates from soluble bacterial molecules, thus obtaining proteins with a high degree of purity. Even aggregated, the proteins in IB often present native-like secondary and tertiary structures, which can be maintained as long as solubilization is carried out in non-denaturing condition. High pressure solubilizes IB by weakening hydrophobic interactions, while alkaline pH solubilizes aggregates by electrostatic repulsion. The combination of high pressure and alkaline pH is effective for IB solubilization at a mild, non-denaturing condition, which is useful for subsequent refolding. Here, we describe the expression of recombinant proteins in Escherichia coli using a rich medium to obtain high expression levels, bacterial lysis, and washing of the IB to obtain products of high purity, and, finally, the solubilization and high yield of refolded proteins using high pressure and alkaline pH.
Collapse
Affiliation(s)
- Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil.
| | - Rosa Maria Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, SP, Brazil
| |
Collapse
|
2
|
Singhvi P, Panda AK. Solubilization and Refolding of Inclusion Body Proteins. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2406:371-387. [PMID: 35089569 DOI: 10.1007/978-1-0716-1859-2_22] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Expression of heterologous proteins in E. coli often leads to the formation of protein aggregates known as inclusion bodies (IBs). Inclusion body aggregates pose a major hurdle in the recovery of bioactive proteins from E. coli. Usage of strong denaturing buffers for solubilization of bacterial IBs results in poor recovery of bioactive protein. Structure-function understanding of IBs in the last two decades have led to the development of several mild solubilization buffers, which improve the recovery of bioactive from IBs. Recently, combinatorial mild solubilization methods have paved the way for solubilization of wide range of inclusion bodies with appreciable refolding yield. Here, we describe a simple protocol for solubilization and refolding of an inclusion body protein with appreciable recovery.
Collapse
Affiliation(s)
- Priyank Singhvi
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Amulya K Panda
- Product Development Cell, National Institute of Immunology, New Delhi, India.
| |
Collapse
|
3
|
Bansal R, Jha SK, Jha NK. Size-based Degradation of Therapeutic Proteins - Mechanisms, Modelling and Control. Biomol Concepts 2021; 12:68-84. [PMID: 34146465 DOI: 10.1515/bmc-2021-0008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/07/2021] [Indexed: 02/02/2023] Open
Abstract
Protein therapeutics are in great demand due to their effectiveness towards hard-to-treat diseases. Despite their high demand, these bio-therapeutics are very susceptible to degradation via aggregation, fragmentation, oxidation, and reduction, all of which are very likely to affect the quality and efficacy of the product. Mechanisms and modelling of these degradation (aggregation and fragmentation) pathways is critical for gaining a deeper understanding of stability of these products. This review aims to provide a summary of major developments that have occurred towards unravelling the mechanisms of size-based protein degradation (particularly aggregation and fragmentation), modelling of these size-based degradation pathways, and their control. Major caveats that remain in our understanding and control of size-based protein degradation have also been presented and discussed.
Collapse
Affiliation(s)
- Rohit Bansal
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
4
|
Bacterial Inclusion Bodies: A Treasure Trove of Bioactive Proteins. Trends Biotechnol 2020; 38:474-486. [DOI: 10.1016/j.tibtech.2019.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/29/2019] [Accepted: 12/06/2019] [Indexed: 12/24/2022]
|
5
|
Photoactivatable fluorescent probes for spatiotemporal-controlled biosensing and imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.115811] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Chura-Chambi RM, da Silva CMR, Pereira LR, Bartolini P, Ferreira LCDS, Morganti L. Protein refolding based on high hydrostatic pressure and alkaline pH: Application on a recombinant dengue virus NS1 protein. PLoS One 2019; 14:e0211162. [PMID: 30682103 PMCID: PMC6347194 DOI: 10.1371/journal.pone.0211162] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/08/2019] [Indexed: 12/13/2022] Open
Abstract
In this study we evaluated the association of high hydrostatic pressure (HHP) and alkaline pH as a minimally denaturing condition for the solubilization of inclusion bodies (IBs) generated by recombinant proteins expressed by Escherichia coli strains. The method was successfully applied to a recombinant form of the dengue virus (DENV) non-structural protein 1 (NS1). The minimal pH for IBs solubilization at 1 bar was 12 while a pH of 10 was sufficient for solubilization at HHP: 2.4 kbar for 90 min and 0.4 kbar for 14 h 30 min. An optimal refolding condition was achieved by compression of IBs at HHP and pH 10.5 in the presence of arginine, oxidized and reduced glutathiones, providing much higher yields (up to 8-fold) than association of HHP and GdnHCl via an established protocol. The refolded NS1, 109 ± 9.5 mg/L bacterial culture was recovered mainly as monomer and dimer, corresponding up to 90% of the total protein and remaining immunologically active. The proposed conditions represent an alternative for the refolding of immunologically active recombinant proteins expressed as IBs.
Collapse
Affiliation(s)
- Rosa Maria Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
| | - Cleide Mara Rosa da Silva
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
| | - Lennon Ramos Pereira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Paolo Bartolini
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
| | - Luis Carlos de Souza Ferreira
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Rosa da Silva CM, Chura-Chambi RM, Ramos Pereira L, Cordeiro Y, de Souza Ferreira LC, Morganti L. Association of high pressure and alkaline condition for solubilization of inclusion bodies and refolding of the NS1 protein from zika virus. BMC Biotechnol 2018; 18:78. [PMID: 30541520 PMCID: PMC6291932 DOI: 10.1186/s12896-018-0486-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 11/23/2018] [Indexed: 11/30/2022] Open
Abstract
Background Proteins in inclusion bodies (IBs) present native-like secondary structures. However, chaotropic agents at denaturing concentrations, which are widely used for IB solubilization and subsequent refolding, unfold these secondary structures. Removal of the chaotropes frequently causes reaggregation and poor recovery of bioactive proteins. High hydrostatic pressure (HHP) and alkaline pH are two conditions that, in the presence of low level of chaotropes, have been described as non-denaturing solubilization agents. In the present study we evaluated the strategy of combination of HHP and alkaline pH on the solubilization of IB using as a model an antigenic form of the zika virus (ZIKV) non-structural 1 (NS1) protein. Results Pressure-treatment (2.4 kbar) of NS1-IBs at a pH of 11.0 induced a low degree of NS1 unfolding and led to solubilization of the IBs, mainly into monomers. After dialysis at pH 8.5, NS1 was refolded and formed soluble oligomers. High (up to 68 mg/liter) NS1 concentrations were obtained by solubilization of NS1-IBs at pH 11 in the presence of arginine (Arg) with a final yield of approximately 80% of total protein content. The process proved to be efficient, quick and did not require further purification steps. Refolded NS1 preserved biological features regarding reactivity with antigen-specific antibodies, including sera of ZIKV-infected patients. The method resulted in an increase of approximately 30-fold over conventional IB solubilization-refolding methods. Conclusions The present results represent an innovative non-denaturing protein refolding process by means of the concomitant use of HHP and alkaline pH. Application of the reported method allowed the recovery of ZIKV NS1 at a condition that maintained the antigenic properties of the protein. Electronic supplementary material The online version of this article (10.1186/s12896-018-0486-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cleide Mara Rosa da Silva
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, Brazil
| | - Rosa Maria Chura-Chambi
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, Brazil
| | - Lennon Ramos Pereira
- Departamento de Microbiologia, Universidade de São Paulo, Instituto de Ciências Biomédicas, Av. Prof. Lineu Prestes ,1374, São Paulo, 05508-000, Brazil
| | - Yraima Cordeiro
- Universidade Federal do Rio de Janeiro, Faculdade de Farmácia, Av. Carlos Chagas Filho 373, Rio de Janeiro, 21941-902, Brazil
| | - Luís Carlos de Souza Ferreira
- Departamento de Microbiologia, Universidade de São Paulo, Instituto de Ciências Biomédicas, Av. Prof. Lineu Prestes ,1374, São Paulo, 05508-000, Brazil
| | - Ligia Morganti
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, Av. Prof. Lineu Prestes, 2242, São Paulo, 05508-000, Brazil.
| |
Collapse
|
8
|
Wang W, Roberts CJ. Protein aggregation – Mechanisms, detection, and control. Int J Pharm 2018; 550:251-268. [DOI: 10.1016/j.ijpharm.2018.08.043] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/18/2018] [Accepted: 08/20/2018] [Indexed: 12/19/2022]
|
9
|
Chura-Chambi RM, Fraga TR, da Silva LB, Yamamoto BB, Isaac L, Barbosa AS, Morganti L. Leptospira interrogans thermolysin refolded at high pressure and alkaline pH displays proteolytic activity against complement C3. ACTA ACUST UNITED AC 2018; 19:e00266. [PMID: 29992100 PMCID: PMC6036645 DOI: 10.1016/j.btre.2018.e00266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/23/2018] [Accepted: 06/16/2018] [Indexed: 11/30/2022]
Abstract
Enzymes from the thermolysin family are crucial factors in the pathogenesis of several diseases caused by bacteria and are potential targets for therapeutic interventions. Thermolysin encoded by the gene LIC13322 of the causative agent of leptospirosis, Leptospira interrogans, was shown to cleave proteins from the Complement System. However, the production of this recombinant protein using traditional refolding processes with high levels of denaturing reagents for thermolysin inclusion bodies (TL-IBs) solubilization results in poor recovery and low proteolytic activity probably due to improper refolding of the protein. Based on the assumption that leptospiral proteases play a crucial role during infection, the aim of this work was to obtain a functional recombinant thermolysin for future studies on the role of these metalloproteases on leptospiral infection. The association of high hydrostatic pressure (HHP) and alkaline pH was utilized for thermolysin refolding. Incubation of a suspension of TL-IBs at HHP and a pH of 11.0 is non-denaturing but effective for thermolysin solubilization. Soluble protein does not reaggregate by dialysis to pH 8.0. A volumetric yield of 46 mg thermolysin/L of bacterial culture and a yield of near 100% in relation to the total thermolysin present in TL-IBs were obtained. SEC-purified thermolysin suffers fragmentation, likely due to autoproteolysis and presents proteolytic activity against complement C3 α-chain, possibly by a generation of a C3b-like molecule. The proteolytic activity of thermolysin against C3 was time and dose-dependent. The experience gained in this study shall help to establish efficient HHP-based processes for refolding of bioactive proteins from IBs.
Collapse
Affiliation(s)
- Rosa Maria Chura-Chambi
- Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, Centro de Biotecnologia, Av. Prof. Lineu Prestes, 2242, CEP 05508-000, São Paulo, SP, Brazil
| | - Tatiana Rodrigues Fraga
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, Av. Prof. Lineu Prestes, 1374, CEP 05508-900, São Paulo, SP, Brazil
| | - Ludmila Bezerra da Silva
- Instituto Butantan, Laboratório de Bacteriologia, Av. Vital Brasil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Bruno Bernardi Yamamoto
- Instituto Butantan, Laboratório de Bacteriologia, Av. Vital Brasil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Lourdes Isaac
- Instituto de Ciências Biomédicas, Universidade de São Paulo, Departamento de Imunologia, Av. Prof. Lineu Prestes, 1374, CEP 05508-900, São Paulo, SP, Brazil
| | - Angela Silva Barbosa
- Instituto Butantan, Laboratório de Bacteriologia, Av. Vital Brasil, 1500, CEP 05503-900, São Paulo, SP, Brazil
| | - Ligia Morganti
- Instituto de Pesquisas Energéticas e Nucleares IPEN-CNEN/SP, Centro de Biotecnologia, Av. Prof. Lineu Prestes, 2242, CEP 05508-000, São Paulo, SP, Brazil
| |
Collapse
|
10
|
|
11
|
Wang Q, Liu Y, Zhang C, Guo F, Feng C, Li X, Shi H, Su Z. High hydrostatic pressure enables almost 100% refolding of recombinant human ciliary neurotrophic factor from inclusion bodies at high concentration. Protein Expr Purif 2017; 133:152-159. [PMID: 28323167 DOI: 10.1016/j.pep.2017.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/12/2017] [Accepted: 03/14/2017] [Indexed: 11/28/2022]
Abstract
Protein refolding from inclusion bodies (IBs) often encounters a problem of low recovery at high protein concentration. In this study, we demonstrated that high hydrostatic pressure (HHP) could simultaneously achieve high refolding concentration and high refolding yield for IBs of recombinant human ciliary neurotrophic factor (rhCNTF), a potential therapeutic for neurodegenerative diseases. The use of dilution refolding obtained 18% recovery at 3 mg/mL, even in the presence of 4 M urea. In contrast, HHP refolding could efficiently increase the recovery up to almost 100% even at 4 mg/mL. It was found that in the dilution, hydrophobic aggregates were the off-path products and their amount increased with the protein concentration. However, HHP could effectively minimize the formation of hydrophobic aggregates, leading to almost complete conversion of the rhCNTF IBs to the correct configuration. The stable operation range of concentration is 0.5-4.0 mg/mL, in which the refolding yield was almost 100%. Compared with the literatures where HHP failed to increase the refolding yield beyond 90%, the reason could be attributed to the structural difference that rhCNTF has no disulfide bond and is a monomeric protein. After purification by one-step of anionic chromatography, the purity of rhCNTF reached 95% with total process recovery of 54.1%. The purified rhCNTF showed similar structure and in vitro bioactivity to the native species. The whole process featured integration of solubilization/refolding, a high refolding yield of 100%, a high concentration of 4 mg/mL, and a simple chromatography to ensure a high productivity.
Collapse
Affiliation(s)
- Qi Wang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yongdong Liu
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| | - Chun Zhang
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Fangxia Guo
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Cui Feng
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Xiunan Li
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Hong Shi
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China
| | - Zhiguo Su
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, No.1 Beierjie Street, Zhongguancun, Haidian District, Beijing 100190, PR China.
| |
Collapse
|
12
|
Acharya A, Bogdanov AM, Grigorenko BL, Bravaya KB, Nemukhin AV, Lukyanov KA, Krylov AI. Photoinduced Chemistry in Fluorescent Proteins: Curse or Blessing? Chem Rev 2016; 117:758-795. [PMID: 27754659 DOI: 10.1021/acs.chemrev.6b00238] [Citation(s) in RCA: 178] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Photoinduced reactions play an important role in the photocycle of fluorescent proteins from the green fluorescent protein (GFP) family. Among such processes are photoisomerization, photooxidation/photoreduction, breaking and making of covalent bonds, and excited-state proton transfer (ESPT). Many of these transformations are initiated by electron transfer (ET). The quantum yields of these processes vary significantly, from nearly 1 for ESPT to 10-4-10-6 for ET. Importantly, even when quantum yields are relatively small, at the conditions of repeated illumination the overall effect is significant. Depending on the task at hand, fluorescent protein photochemistry is regarded either as an asset facilitating new applications or as a nuisance leading to the loss of optical output. The phenomena arising due to phototransformations include (i) large Stokes shifts, (ii) photoconversions, photoactivation, and photoswitching, (iii) phototoxicity, (iv) blinking, (v) permanent bleaching, and (vi) formation of long-lived intermediates. The focus of this review is on the most recent experimental and theoretical work on photoinduced transformations in fluorescent proteins. We also provide an overview of the photophysics of fluorescent proteins, highlighting the interplay between photochemistry and other channels (fluorescence, radiationless relaxation, and intersystem crossing). The similarities and differences with photochemical processes in other biological systems and in dyes are also discussed.
Collapse
Affiliation(s)
- Atanu Acharya
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| | - Alexey M Bogdanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Bella L Grigorenko
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Ksenia B Bravaya
- Department of Chemistry, Boston University , Boston, Massachusetts United States
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University , Moscow, Russia.,Emanuel Institute of Biochemical Physics, Russian Academy of Sciences , Moscow, Russia
| | - Konstantin A Lukyanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry , Moscow, Russia.,Nizhny Novgorod State Medical Academy , Nizhny Novgorod, Russia
| | - Anna I Krylov
- Department of Chemistry, University of Southern California , Los Angeles, California 90089-0482, United States
| |
Collapse
|
13
|
Zakharova GS, Poloznikov AA, Chubar TA, Gazaryan IG, Tishkov VI. High-yield reactivation of anionic tobacco peroxidase overexpressed in Escherichia coli. Protein Expr Purif 2015; 113:85-93. [PMID: 25986322 DOI: 10.1016/j.pep.2015.05.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 05/08/2015] [Accepted: 05/10/2015] [Indexed: 10/23/2022]
Abstract
Anionic tobacco peroxidase (TOP) is extremely active in chemiluminescence reaction of luminol oxidation without addition of enhancers and more stable than horseradish peroxidase under antibody conjugation conditions. In addition, recombinant TOP (rTOP) produced in Escherichia coli is known to be a perfect direct electron transfer catalyst on electrodes of various origin. These features make the task of development of a high-yield reactivation protocol for rTOP practically important. Previous attempts to reactivate the enzyme from E. coli inclusion bodies were successful, but the reported reactivation yield was only 14%. In this work, we thoroughly screened the refolding conditions for dilution protocol and compared it with gel-filtration chromatography. The impressive reactivation yield in the dilution protocol (85%) was achieved for 8 μg/mL solubilized rTOP protein and the refolding medium containing 0.3 mM oxidized glutathione, 0.05 mM dithiothreitol, 5 mM CaCl2, 5% glycerol in 50 mM Tris-HCl buffer, pH 9.6, with 1 μM hemin added at the 24th hour of incubation. A practically important discovery was a 30-40% increase in the reactivation yield upon delayed addition of hemin. The reactivation yield achieved is one of the highest reported in the literature on protein refolding by dilution. The final yield of purified active non-glycosylated rTOP was ca. 60 mg per L of E. coli culture, close to the yield reported before for tomato and tobacco plants overexpressing glycosylated TOP (60 mg/kg biomass) and much higher than for the previously reported refolding protocol (2.6 mg per L of E. coli culture).
Collapse
Affiliation(s)
- G S Zakharova
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia.
| | - A A Poloznikov
- Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - T A Chubar
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - I G Gazaryan
- M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| | - V I Tishkov
- A.N. Bach Institute of Biochemistry, RAS, 119071 Moscow, Russia; Innovations and High Technologies MSU Ltd, 109559 Moscow, Russia; M.V. Lomonosov Moscow State University, Chemistry Faculty, Department of Chemical Enzymology, 119899 Moscow, Russia
| |
Collapse
|
14
|
Lemke LS, Chura-Chambi RM, Rodrigues D, Cussiol JRR, Malavasi NV, Alegria TGP, Netto LES, Morganti L. Investigation on solubilization protocols in the refolding of the thioredoxin TsnC from Xylella fastidiosa by high hydrostatic pressure approach. Protein Expr Purif 2014; 106:72-7. [PMID: 25448595 DOI: 10.1016/j.pep.2014.10.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 10/21/2014] [Accepted: 10/23/2014] [Indexed: 01/27/2023]
Abstract
The lack of efficient refolding methodologies must be overcome to take full advantage of the fact that bacteria express high levels of aggregated recombinant proteins. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, dissociating aggregates, which makes HHP a useful tool to solubilize proteins for subsequent refolding. A process of refolding was set up by using as a model TsnC, a thioredoxin that catalyzes the disulfide reduction to a dithiol, a useful indication of biological activity. The inclusion bodies (IB) were dissociated at 2.4 kbar. The effect of incubation of IB suspensions at 1-800 bar, the guanidine hydrochloride concentration, the oxidized/reduced glutathione (GSH/GSSG) ratios, and the additives in the refolding buffer were analyzed. To assess the yields of fully biologically active protein obtained for each tested condition, it was crucial to analyze both the TsnC solubilization yield and its enzymatic activity. Application of 2.4 kbar to the IB suspension in the presence of 9 mM GSH, 1mM GSSG, 0.75 M guanidine hydrochloride, and 0.5M arginine with subsequent incubation at 1 bar furnished high refolding yield (81%). The experience gained in this study shall help to establish efficient HHP-based protein refolding processes for other proteins.
Collapse
Affiliation(s)
- Laura Simoni Lemke
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Rosa Maria Chura-Chambi
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Daniella Rodrigues
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Jose Renato Rosa Cussiol
- Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Natalia Vallejo Malavasi
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - Thiago Geronimo Pires Alegria
- Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Luis Eduardo Soares Netto
- Instituto de Biociências, Departamento de Genética e Biologia Evolutiva, Universidade de São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Instituto de Pesquisas Energéticas e Nucleares, IPEN-CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil.
| |
Collapse
|
15
|
Lopes APY, Lopes LM, Fraga TR, Chura-Chambi RM, Sanson AL, Cheng E, Nakajima E, Morganti L, Martins EAL. VapC from the leptospiral VapBC toxin-antitoxin module displays ribonuclease activity on the initiator tRNA. PLoS One 2014; 9:e101678. [PMID: 25047537 PMCID: PMC4105405 DOI: 10.1371/journal.pone.0101678] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 06/10/2014] [Indexed: 11/30/2022] Open
Abstract
The prokaryotic ubiquitous Toxin-Antitoxin (TA) operons encode a stable toxin and an unstable antitoxin. The most accepted hypothesis of the physiological function of the TA system is the reversible cessation of cellular growth under stress conditions. The major TA family, VapBC is present in the spirochaete Leptospira interrogans. VapBC modules are classified based on the presence of a predicted ribonucleasic PIN domain in the VapC toxin. The expression of the leptospiral VapC in E. coli promotes a strong bacterial growth arrestment, making it difficult to express the recombinant protein. Nevertheless, we showed that long term induction of expression in E. coli enabled the recovery of VapC in inclusion bodies. The recombinant protein was successfully refolded by high hydrostatic pressure, providing a new method to obtain the toxin in a soluble and active form. The structural integrity of the recombinant VapB and VapC proteins was assessed by circular dichroism spectroscopy. Physical interaction between the VapC toxin and the VapB antitoxin was demonstrated in vivo and in vitro by pull down and ligand affinity blotting assays, respectively, thereby indicating the ultimate mechanism by which the activity of the toxin is regulated in bacteria. The predicted model of the leptospiral VapC structure closely matches the Shigella's VapC X-ray structure. In agreement, the ribonuclease activity of the leptospiral VapC was similar to the activity described for Shigella's VapC, as demonstrated by the cleavage of tRNAfMet and by the absence of unspecific activity towards E. coli rRNA. This finding suggests that the cleavage of the initiator transfer RNA may represent a common mechanism to a larger group of bacteria and potentially configures a mechanism of post-transcriptional regulation leading to the inhibition of global translation.
Collapse
Affiliation(s)
| | - Luana M. Lopes
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Tatiana R. Fraga
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Rosa M. Chura-Chambi
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | - André L. Sanson
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Elisabeth Cheng
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Erika Nakajima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Ligia Morganti
- Centro de Biotecnologia, Instituto de Pesquisas Energéticas e Nucleares, Comissão Nacional de Energia Nuclear, São Paulo, São Paulo, Brazil
| | | |
Collapse
|
16
|
Rodrigues D, Farinha-Arcieri LE, Ventura AM, Chura-Chambi RM, Malavasi NV, Lemke LS, Guimarães JS, Ho PL, Morganti L. Effect of pressure on refolding of recombinant pentameric cholera toxin B. J Biotechnol 2014; 173:98-105. [PMID: 24445168 PMCID: PMC7114129 DOI: 10.1016/j.jbiotec.2013.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 12/04/2013] [Accepted: 12/05/2013] [Indexed: 11/16/2022]
Abstract
The production of recombinant proteins is an essential tool for the expansion of modern biological research and biotechnology. The expression of heterologous proteins in Escherichia coli often results in an incomplete folding process that leads to the accumulation of inclusion bodies (IB), aggregates that hold a certain degree of native-like secondary structure. High hydrostatic pressure (HHP) impairs intermolecular hydrophobic and electrostatic interactions, leading to dissociation of aggregates under non-denaturing conditions and is therefore a useful tool to solubilize proteins for posterior refolding. Cholera toxin (CT) is composed of a non-toxic pentamer of B subunits (CTB), a useful adjuvant in vaccines, and a toxic subunit A (CTA). We studied the process of refolding of CTB using HHP. HHP was shown to be effective for dissociation of CTB monomers from IB. Posterior incubation at atmospheric pressure of concentrated CTB (1mg/ml) is necessary for the association of the monomers. Pentameric CTB was obtained when suspensions of CTB IB were compressed at 2.4kbar for 16h in the presence of Tween 20 and incubated at 1bar for 120h. Soluble and biologically active pentameric CTB was obtained, with a yield of 213mg CTB/liter of culture. The experience gained in this study can be important to improve the refolding of proteins with quaternary structure.
Collapse
Affiliation(s)
- D Rodrigues
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - L E Farinha-Arcieri
- Universidade de São Paulo, Departamento de Microbiologia do Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - A M Ventura
- Universidade de São Paulo, Departamento de Microbiologia do Instituto de Ciências Biomédicas, São Paulo, Brazil
| | - R M Chura-Chambi
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - N V Malavasi
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - L S Lemke
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - J S Guimarães
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil
| | - P L Ho
- Instituto Butantan, Centro de Biotecnologia, São Paulo, Brazil
| | - L Morganti
- Instituto de Pesquisas Energéticas e Nucleares - IPEN - CNEN/SP, Centro de Biotecnologia, São Paulo, Brazil.
| |
Collapse
|
17
|
Malavasi N, Cordeiro Y, Rodrigues D, Chura-Chambi R, Lemke L, Morganti L. The effect of temperature on protein refolding at high pressure: Enhanced green fluorescent protein as a model. Process Biochem 2014. [DOI: 10.1016/j.procbio.2013.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Chura-Chambi RM, Nakajima E, de Carvalho RR, Miyasato PA, Oliveira SC, Morganti L, Martins EAL. Refolding of the recombinant protein Sm29, a step toward the production of the vaccine candidate against schistosomiasis. J Biotechnol 2013; 168:511-9. [PMID: 24084635 DOI: 10.1016/j.jbiotec.2013.09.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Revised: 09/19/2013] [Accepted: 09/23/2013] [Indexed: 12/28/2022]
Abstract
Schistosomiasis is an important parasitic disease, with about 240 million people infected worldwide. Humans and animals can be infected, imposing an enormous social and economic burden. The only drug available for chemotherapy, praziquantel, does not control reinfections, and an efficient vaccine for prophylaxis is still missing. However, the tegumental protein Sm29 of Schistosoma mansoni was shown to be a promising antigen to compose an anti-schistosomiasis vaccine. Though, recombinant Sm29 is expressed in Escherichia coli as insoluble inclusion bodies requiring an efficient process of refolding, thus, hampering its production in large scale. We present in this work studies to refold the recombinant Sm29 using high hydrostatic pressure, a mild condition to dissociate aggregated proteins, leading to refolding on a soluble conformation. Our studies resulted in high yield of rSm29 (73%) as a stably soluble and structured protein. The refolded antigen presented protective effect against S. mansoni development in immunized mice. We concluded that the refolding process by application of high hydrostatic pressure succeeded, and the procedure can be scaled-up, allowing industrial production of Sm29.
Collapse
Affiliation(s)
- Rosa M Chura-Chambi
- Centro de Biotecnologia, Instituto Pesquisas Energéticas e Nucleares, São Paulo, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
19
|
An analysis of the factors that affect the dissociation of inclusion bodies and the refolding of endostatin under high pressure. Process Biochem 2013. [DOI: 10.1016/j.procbio.2012.12.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Laurent AD, Mironov VA, Chapagain PP, Nemukhin AV, Krylov AI. Exploring structural and optical properties of fluorescent proteins by squeezing: modeling high-pressure effects on the mStrawberry and mCherry red fluorescent proteins. J Phys Chem B 2012; 116:12426-40. [PMID: 22988813 PMCID: PMC3500579 DOI: 10.1021/jp3060944] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Molecular dynamics calculations of pressure effects on mStrawberry and mCherry fluorescent proteins are reported. The simulations reveal that mStrawberry has much floppier structure at atmospheric pressure, as evidenced by larger backbone fluctuations and the coexistence of two conformers that differ by Ser146 orientation. Consequently, pressure increase has a larger effect on mStrawberry, making its structure more rigid and reducing the population of one of the conformers. The most significant effect of pressure increase is in the hydrogen-bonding network between the chromophore and the nearby residues. The quantum-mechanics/molecular mechanics calculations of excitation energies in mStrawberry explain the observed blue shift and identify Lys70 as the residue that has the most pronounced effect on the spectra. The results suggest that pressure increase causes an initial increase of fluorescence yield only for relatively floppy fluorescent proteins, whereas the fluorescent proteins that have more rigid structures have quantum yields close to their maximum. The results suggest that a low quantum yield in fluorescent proteins is dynamic in nature and depends on the range of thermal motions of the chromophore and fluctuations in the H-bonding network rather than on their average structure.
Collapse
|
21
|
Pozzi EA, Schwall LR, Jimenez R, Weber JM. Pressure-induced changes in the fluorescence behavior of red fluorescent proteins. J Phys Chem B 2012; 116:10311-6. [PMID: 22861177 PMCID: PMC4022145 DOI: 10.1021/jp306093h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We present an experimental study on the fluorescence behavior of the red fluorescent proteins TagRFP-S, TagRFP-T, mCherry, mOrange2, mStrawberry, and mKO as a function of pressure up to several GPa. TagRFP-S, TagRFP-T, mOrange2, and mStrawberry show an initial increase in fluorescence intensity upon application of pressure above ambient conditions. At higher pressures, the fluorescence intensity decreases dramatically for all proteins under study, probably due to denaturing of the proteins. Small blue shifts in the fluorescence spectra with increasing pressure were seen in all proteins under study, hinting at increased rigidity of the chromophore environment. In addition, mOrange2 and mStrawberry exhibit strong and abrupt changes in their fluorescence spectra at certain pressures. These changes are likely due to structural modifications of the hydrogen bonding environment of the chromophore. The strong differences in behavior between proteins with identical or very similar chromophores highlight how the chromophore environment contributes to pressure-induced behavior of the fluorescence performance.
Collapse
Affiliation(s)
- Eric A. Pozzi
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| | - Linda R. Schwall
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| | - Ralph Jimenez
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| | - J. Mathias Weber
- JILA, NIST and Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309-0440, USA
| |
Collapse
|
22
|
Follonier S, Panke S, Zinn M. Pressure to kill or pressure to boost: a review on the various effects and applications of hydrostatic pressure in bacterial biotechnology. Appl Microbiol Biotechnol 2012; 93:1805-15. [DOI: 10.1007/s00253-011-3854-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/17/2011] [Accepted: 12/19/2011] [Indexed: 02/02/2023]
|
23
|
Refolding of proteins from inclusion bodies: rational design and recipes. Appl Microbiol Biotechnol 2011; 92:241-51. [DOI: 10.1007/s00253-011-3513-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2011] [Revised: 07/18/2011] [Accepted: 07/24/2011] [Indexed: 01/31/2023]
|