1
|
de Oliveira Júnior SD, de Araújo Padilha CE, de Asevedo EA, de Macedo GR, dos Santos ES. Recovery and purification of cellulolytic enzymes from Aspergillus fumigatus CCT 7873 using an aqueous two-phase micellar system. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01573-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
Purpose
In this study, an aqueous two-phase micellar system (ATPMS), formed by the non-ionic surfactant Triton X-114, was used to investigate the partitioning of cellulolytic enzymes produced by the filamentous fungus Aspergillus fumigatus CCT 7873.
Methods
Performance of the ATPMS on the partitioning of CMCase (activity on carboxymethyl cellulose) and FPase (activity on filter paper) was investigated by varying the temperature (35, 40, 45, 50, 55, 60, and 65 °C), enzyme crude extract concentration (20, 40, 60, and 80% w/w), and Triton X-114 concentration (2, 4, 6, and 8% w/w) and by adding different inorganic salts (NaCl, CaCl2, MgSO4, and MnSO4) in the system.
Results
An ATPMS formed with 8% (w/w) Triton X-114 and 40% (w/w) enzymatic crude extract at a system temperature of 55 °C was most favorable for partitioning the tested enzymes. Under these conditions, a purification factor for CMCase and FPase of 10.89 and 0.65 was reached, respectively. The addition of inorganic salts changed the distribution of enzymes. Of these, CaCl2 contributed to a higher distribution coefficient (50.0), whereas for FPase, the presence of MnSO4 in the system improved the purification factor to 3.94.
Conclusion
The highest values obtained for the yield and purification factors demonstrate that ATPMS is an interesting option for recovering and purifying cellulolytic enzymes.
Collapse
|
2
|
Kee PE, Ng TC, Lan JCW, Ng HS. Recent development of unconventional aqueous biphasic system: characteristics, mechanisms and applications. Crit Rev Biotechnol 2020; 40:555-569. [DOI: 10.1080/07388551.2020.1747388] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Phei Er Kee
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Tze-Cheng Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - John Chi-Wei Lan
- Biorefinery and Bioprocess Engineering Laboratory, Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan, Taiwan
| | - Hui-Suan Ng
- Faculty of Applied Sciences, UCSI University, UCSI Heights, Kuala Lumpur, Cheras, Malaysia
| |
Collapse
|
3
|
Oliveira Filho MA, Caldas MCB, Vasconcelos LTCDP, Ribeiro VT, Araújo JSD, de Araújo Padilha CE, de Sousa Junior FC, dos Santos ES. Partitioning and recovery of an elongation factor (1-γ) of Leishmania infantum chagasi expressed in E. coli M15 with simultaneous endotoxin removal using aqueous two-phase system. SEP SCI TECHNOL 2019. [DOI: 10.1080/01496395.2019.1586727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Marcos Antônio Oliveira Filho
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Maria Cecília Bezerra Caldas
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | - Vitor Troccoli Ribeiro
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Jaciara Silva de Araújo
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Carlos Eduardo de Araújo Padilha
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Francisco Canindé de Sousa Junior
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
- Department of Pharmacy, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Everaldo Silvino dos Santos
- Laboratory of Biochemical Engineering, Chemical Engineering Department, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| |
Collapse
|
4
|
Jamaluddin N, Ariff AB, Wong FWF. Purification of a Bacteriocin-Like Inhibitory Substance Derived from Pediococcus acidilactici Kp10 by an Aqueous Micellar Two-Phase System. Biotechnol Prog 2018; 35:e2719. [PMID: 30299004 DOI: 10.1002/btpr.2719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/27/2018] [Accepted: 09/16/2018] [Indexed: 01/09/2023]
Abstract
Aqueous micellar two-phase system (AMTPS) is an extractive technique of biomolecule, where it is based on the differential partitioning behavior of biomolecule between a micelle-rich and a micelle-poor phase. In this study, an AMTPS composed of a nonionic surfactant, Triton X-100 (TX-100) was used for purifying a bacteriocin-like inhibitory substance (BLIS) derived from Pediococcus acidilactici Kp10. The influences of the surfactant concentration and the effect of additives on the partitioning behavior and activity yield of the BLIS were investigated. The obtained coexistence curves showed that the mixtures of solutions composed of different surfactant concentrations (5-30% w/w) and 50% w/w crude load were able to separate into two phases at temperatures of above 60 °C. The optimum conditions for BLIS partitioning using the TX-100-based AMTPS were: TX-100 concentration of 22.5% w/w, CFCS load of 50% w/w, incubation time of 30 min at 75 °C, and back-extraction using acetone precipitation. This optimal partitioning resulted in an activity yield of 64.3% and a purification factor of 5.8. Moreover, the addition of several additives, such as sorbitol, KCl, dioctyl sulfosuccinate sodium salt, and Coomassie® Brilliant Blue, demonstrated no improvement in the BLIS separation, except for Amberlite® resin XAD-4, where the activity yield was improved to 70.3% but the purification factor was reduced to 2.3. Results from this study have demonstrated the potential and applicability of TX-100-based AMTPS as a primary recovery method for the BLIS from a complex fermentation broth of P. acidilactici Kp10. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2719, 2019.
Collapse
Affiliation(s)
- Norfariza Jamaluddin
- Depart. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Arbakariya B Ariff
- Depart. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Fadzlie Wong Faizal Wong
- Depart. of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Bioprocessing and Biomanufacturing Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
5
|
Ng HS, Tan GYT, Lee KH, Zimmermann W, Yim HS, Lan JCW. Direct recovery of mangostins from Garcinia mangostana pericarps using cellulase-assisted aqueous micellar biphasic system with recyclable surfactant. J Biosci Bioeng 2018; 126:507-513. [DOI: 10.1016/j.jbiosc.2018.04.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 03/27/2018] [Accepted: 04/14/2018] [Indexed: 11/26/2022]
|
6
|
|
7
|
Torres FAE, de Almeida Francisco AC, Pereira JFB, Santos-Ebinuma VDC. Imidazolium-based ionic liquids as co-surfactants in aqueous micellar two-phase systems composed of nonionic surfactants and their aptitude for recovery of natural colorants from fermented broth. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Nadar SS, Pawar RG, Rathod VK. Recent advances in enzyme extraction strategies: A comprehensive review. Int J Biol Macromol 2017; 101:931-957. [DOI: 10.1016/j.ijbiomac.2017.03.055] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/19/2022]
|
9
|
Enhanced recovery of lipase derived from Burkholderia cepacia from fermentation broth using recyclable ionic liquid/polymer-based aqueous two-phase systems. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.01.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Tan GYT, Zimmermann W, Lee KH, Lan JCW, Yim HS, Ng HS. Recovery of mangostins from Garcinia mangostana peels with an aqueous micellar biphasic system. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.12.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Alhelli AM, Abdul Manap MY, Mohammed AS, Mirhosseini H, Suliman E, Shad Z, Mohammed NK, Meor Hussin AS. Use of response surface methodology for partitioning, one-step purification of alkaline extracellular lipase from Penicillium candidum (PCA 1/TT031). J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1039:66-73. [DOI: 10.1016/j.jchromb.2016.10.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 09/27/2016] [Accepted: 10/26/2016] [Indexed: 10/20/2022]
|
12
|
Liquid–liquid extraction of lipase produced by psychrotrophic yeast Leucosporidium scottii L117 using aqueous two-phase systems. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.10.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Imidazolium based ionic liquid type surfactant improves activity and thermal stability of lipase of Rhizopus oryzae. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Tan CH, Show PL, Ooi CW, Ng EP, Lan JCW, Ling TC. Novel lipase purification methods - a review of the latest developments. Biotechnol J 2014; 10:31-44. [PMID: 25273633 DOI: 10.1002/biot.201400301] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 08/05/2014] [Accepted: 08/28/2014] [Indexed: 11/05/2022]
Abstract
Microbial lipases are popular biocatalysts due to their ability to catalyse diverse reactions such as hydrolysis, esterification, and acidolysis. Lipases function efficiently on various substrates in aqueous and non-aqueous media. Lipases are chemo-, regio-, and enantio-specific, and are useful in various industries, including those manufacturing food, detergents, and pharmaceuticals. A large number of lipases from fungal and bacterial sources have been isolated and purified to homogeneity. This success is attributed to the development of both conventional and novel purification techniques. This review highlights the use of these techniques in lipase purification, including conventional techniques such as: (i) ammonium sulphate fractionation; (ii) ion-exchange; (iii) gel filtration and affinity chromatography; as well as novel techniques such as (iv) reverse micellar system; (v) membrane processes; (vi) immunopurification; (vi) aqueous two-phase system; and (vii) aqueous two-phase floatation. A summary of the purification schemes for various bacterial and fungal lipases are also provided.
Collapse
Affiliation(s)
- Chung Hong Tan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia Campus, Jalan Broga, Selangor Darul Ehsan, Malaysia
| | | | | | | | | | | |
Collapse
|
15
|
Vicente FA, Malpiedi LP, e Silva FA, Pessoa A, Coutinho JA, Ventura SP. Design of novel aqueous micellar two-phase systems using ionic liquids as co-surfactants for the selective extraction of (bio)molecules. Sep Purif Technol 2014. [DOI: 10.1016/j.seppur.2014.06.045] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Salmon DNX, Walter A, Porto TS, Moreira KA, Vandenberghe LPDS, Soccol CR, Porto ALF, Spier MR. Aqueous two-phase extraction for partial purification ofSchizophyllum communephytase produced under solid-state fermentation. BIOCATAL BIOTRANSFOR 2014. [DOI: 10.3109/10242422.2013.872633] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Purification of a novel protease enzyme from kesinai plant (Streblus asper) leaves using a surfactant–salt aqueous micellar two-phase system: a potential low cost source of enzyme and purification method. Eur Food Res Technol 2013. [DOI: 10.1007/s00217-013-2037-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Show PL, Ooi CW, Anuar MS, Ariff A, Yusof YA, Chen SK, Annuar MSM, Ling TC. Recovery of lipase derived from Burkholderia cenocepacia ST8 using sustainable aqueous two-phase flotation composed of recycling hydrophilic organic solvent and inorganic salt. Sep Purif Technol 2013. [DOI: 10.1016/j.seppur.2013.03.018] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|