1
|
Rodrigues RC, Berenguer-Murcia Á, Carballares D, Morellon-Sterling R, Fernandez-Lafuente R. Stabilization of enzymes via immobilization: Multipoint covalent attachment and other stabilization strategies. Biotechnol Adv 2021; 52:107821. [PMID: 34455028 DOI: 10.1016/j.biotechadv.2021.107821] [Citation(s) in RCA: 229] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 12/22/2022]
Abstract
The use of enzymes in industrial processes requires the improvement of their features in many instances. Enzyme immobilization, a requirement to facilitate the recovery and reuse of these water-soluble catalysts, is one of the tools that researchers may utilize to improve many of their properties. This review is focused on how enzyme immobilization may improve enzyme stability. Starting from the stabilization effects that an enzyme may experience by the mere fact of being inside a solid particle, we detail other possibilities to stabilize enzymes: generation of favorable enzyme environments, prevention of enzyme subunit dissociation in multimeric enzymes, generation of more stable enzyme conformations, or enzyme rigidification via multipoint covalent attachment. In this last point, we will discuss the features of an "ideal" immobilization protocol to maximize the intensity of the enzyme-support interactions. The most interesting active groups in the support (glutaraldehyde, epoxide, glyoxyl and vinyl sulfone) will be also presented, discussing their main properties and uses. Some instances in which the number of enzyme-support bonds is not directly related to a higher stabilization will be also presented. Finally, the possibility of coupling site-directed mutagenesis or chemical modification to get a more intense multipoint covalent immobilization will be discussed.
Collapse
Affiliation(s)
- Rafael C Rodrigues
- Biocatalysis and Enzyme Technology Lab, Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Av. Bento Gonçalves, 9500, P.O. Box 15090, Porto Alegre, RS, Brazil
| | | | - Diego Carballares
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain
| | | | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Campus UAM-CSIC Cantoblanco, Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
2
|
Varga V, Štefuca V, Mihálová L, Levarski Z, Struhárňanská E, Blaško J, Kubinec R, Farkaš P, Sitkey V, Turňa J, Rosenberg M, Stuchlík S. Recombinant Enzymatic Redox Systems for Preparation of Aroma Compounds by Biotransformation. Front Microbiol 2021; 12:684640. [PMID: 34248905 PMCID: PMC8264508 DOI: 10.3389/fmicb.2021.684640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
The aim of this study was to develop immobilized enzyme systems that reduce carbonyl compounds to their corresponding alcohols. The demand for natural aromas and food additives has been constantly growing in recent years. However, it can no longer be met by extraction and isolation from natural materials. One way to increase the availability of natural aromas is to prepare them by the enzymatic transformation of suitable precursors. Recombinant enzymes are currently being used for this purpose. We investigated trans-2-hexenal bioreduction by recombinant Saccharomyces cerevisiae alcohol dehydrogenase (ScADH1) with simultaneous NADH regeneration by recombinant Candida boidinii formate dehydrogenase (FDH). In a laboratory bioreactor with two immobilized enzymes, 88% of the trans-2-hexenal was transformed to trans-2-hexenol. The initial substrate concentration was 3.7 mM. The aldehyde destabilized ScADH1 by eluting Zn2+ ions from the enzyme. A fed-batch operation was used and the trans-2-hexenal concentration was maintained at a low level to limit the negative effect of Zn2+ ion elution from the immobilized ScADH1. Another immobilized two-enzyme system was used to reduce acetophenone to (S)-1-phenylethanol. To this end, the recombinant alcohol dehydrogenase (RrADH) from Rhodococcus ruber was used. This biocatalytic system converted 61% of the acetophenone to (S)-1-phenylethanol. The initial substrate concentration was 8.3 mM. All enzymes were immobilized by poly-His tag to Ni2+, which formed strong but reversible bonds that enabled carrier reuse after the loss of enzyme activity.
Collapse
Affiliation(s)
- Viktor Varga
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Vladimír Štefuca
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Lenka Mihálová
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Zdenko Levarski
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| | - Eva Struhárňanská
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Jaroslav Blaško
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Robert Kubinec
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | | | | | - Ján Turňa
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| | - Michal Rosenberg
- Institute of Biotechnology, Faculty of Food and Chemical Technology, Slovak University of Technology, Bratislava, Slovakia
| | - Stanislav Stuchlík
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.,Science Park of Comenius University, Bratislava, Slovakia
| |
Collapse
|
3
|
Braham SA, Morellon-Sterling R, de Andrades D, Rodrigues RC, Siar EH, Aksas A, Pedroche J, Millán MDC, Fernandez-Lafuente R. Effect of Tris Buffer in the Intensity of the Multipoint Covalent Immobilization of Enzymes in Glyoxyl-Agarose Beads. Appl Biochem Biotechnol 2021; 193:2843-2857. [PMID: 34019251 DOI: 10.1007/s12010-021-03570-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/08/2021] [Indexed: 12/12/2022]
Abstract
Tris is an extensively used buffer that presents a primary amine group on its structure. In the present work trypsin, chymotrypsin and penicillin G acylase (PGA) were immobilized/stabilized on glyoxyl agarose in presence of different concentrations of Tris (from 0 to 20 mM). The effects of the presence of Tris during immobilization were studied analyzing the thermal stability of the obtained immobilized biocatalysts. The results indicate a reduction of the enzyme stability when immobilized in the presence of Tris. This effect can be observed in inactivations carried out at pH 5, 7, and 9 with all the enzymes assayed. The reduction of enzyme stability increased with the Tris concentration. Another interesting result is that the stability reduction was more noticeable for immobilized PGA than in the other immobilized enzymes, the biocatalysts prepared in presence of 20 mM Tris lost totally the activity at pH 7 just after 1 h of inactivation, while the reference at this time still kept around 61 % of the residual activity. These differences are most likely due to the homogeneous distribution of the Lys groups in PGA compared to trypsin and chymotrypsin (where almost 50% of Lys group are in a small percentage of the protein surface). The results suggest that Tris could be affecting the multipoint covalent immobilization in two different ways, on one hand, reducing the number of available glyoxyl groups of the support during immobilization, and on the other hand, generating some steric hindrances that difficult the formation of covalent bonds.
Collapse
Affiliation(s)
- Sabrina Ait Braham
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | | | - Diandra de Andrades
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain.,Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Rafael C Rodrigues
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - El-Hocine Siar
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain.,Transformation and Food Product Elaboration Laboratory, Nutrition and Food Technology Institute (INATAA), University of Brothers Mentouri Constantine 1, Constantine, Algeria
| | - Ali Aksas
- Laboratoire de Biotechnologies Végétales et Ethnobotanique, Faculté des Sciences de la Nature et de la Vie, Université de Bejaia, 06000, Bejaia, Algeria
| | - Justo Pedroche
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Maria Del Carmen Millán
- Group of Plant Proteins, Department of Food and Health, Instituto de la Grasa-CSIC, Seville, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, Instituto de Catálisis-CSIC, C/ Marie Curie 2, Campus UAM-CSI, Cantoblanco, 28049, Madrid, Spain. .,Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
4
|
Efficient Amino Donor Recycling in Amination Reactions: Development of a New Alanine Dehydrogenase in Continuous Flow and Dialysis Membrane Reactors. Catalysts 2021. [DOI: 10.3390/catal11040520] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transaminases have arisen as one of the main biocatalysts for amine production but despite their many advantages, their stability is still a concern for widespread application. One of the reasons for their instability is the need to use an excess of the amino donor when trying to synthesise amines with unfavourable equilibria. To circumvent this, recycling systems for the amino donor, such as amino acid dehydrogenases or aldolases, have proved useful to push the equilibria while avoiding high amino donor concentrations. In this work, we report the use of a new alanine dehydrogenase from the halotolerant bacteria Halomonas elongata which exhibits excellent stability to different cosolvents, combined with the well characterised CbFDH as a recycling system of L-alanine for the amination of three model substrates with unfavourable equilibria. In a step forward, the amino donor recycling system has been co-immobilised and used in flow with success as well as re-used as a dialysis enclosed system for the amination of an aromatic aldehyde.
Collapse
|
5
|
Toprak A, Tükel SS, Yildirim D. Stabilization of multimeric nitrilase via different immobilization techniques for hydrolysis of acrylonitrile to acrylic acid. BIOCATAL BIOTRANSFOR 2021. [DOI: 10.1080/10242422.2020.1869217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Ali Toprak
- Vocational School of Acigol, University of Nevsehir Haci Bektas Veli, Nevsehir, Turkey
- Department of Chemistry, Faculty of Science and Letters, University of Cukurova, Adana, Turkey
| | - S. Seyhan Tükel
- Department of Chemistry, Faculty of Science and Letters, University of Cukurova, Adana, Turkey
| | - Deniz Yildirim
- Department of Chemical Engineering, Faculty of Ceyhan Engineering, University of Cukurova, Adana, Turkey
| |
Collapse
|
6
|
García-García P, Fernandez-Lorente G, Guisan JM. Capture of enzyme aggregates by covalent immobilization on solid supports. Relevant stabilization of enzymes by aggregation. J Biotechnol 2020; 325:138-144. [PMID: 33249106 DOI: 10.1016/j.jbiotec.2020.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 11/24/2022]
Abstract
In this paper, a novel procedure for the immobilization and stabilization of enzymes is proposed: the multipoint covalent attachment of bi-molecular enzyme aggregates. This immobilization protocol allows the "capture" and fixation of the enzyme aggregate on the support surface. In addition to stabilization by multipoint attachment, enzyme aggregation promotes very interesting stabilizing effects. In the presence of low concentrations of polyethylene glycol (30 %) the dimeric amine oxidase from Pisum sativum forms soluble bi-molecular aggregates. Enzyme aggregates were analyzed by Dynamic Light Scattering and by full chemical loading of a mesoporous support (10 % agarose gels activated with glyoxyl groups). The soluble aggregate was immobilized by multipoint attachment on glyoxyl- agarose at pH 8.5 though the four amino termini of the two dimeric molecules (Lys residues are not reactive at this pH). The immobilized aggregated structure cannot undergo any movement (translational or rotational) after multipoint attachment and the aggregate is "fixed" on the support surface even after the removal of PEG. The immobilized aggregate was further incubated at pH 10 in order to allow the Lys residues to react with the glyoxyl groups on the support. Enzyme aggregation has an important effect on enzyme stabilization: the aggregated derivative was 40 fold more stable than a similar derivative of the isolated enzyme and 200 fold more than native enzymes in experiments of thermal inactivation.
Collapse
Affiliation(s)
- Paz García-García
- Laboratory of Microbiology and Food Biocatalysis. Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049, Madrid, Spain
| | - Gloria Fernandez-Lorente
- Laboratory of Microbiology and Food Biocatalysis. Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9, UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP, CSIC), Marie Curie, 2, UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
7
|
Immobilization of alcohol dehydrogenase from Saccharomyces cerevisiae onto carboxymethyl dextran-coated magnetic nanoparticles: a novel route for biocatalyst improvement via epoxy activation. Sci Rep 2020; 10:19478. [PMID: 33173138 PMCID: PMC7656461 DOI: 10.1038/s41598-020-76463-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/14/2020] [Indexed: 01/01/2023] Open
Abstract
A novel method is described for the immobilization of alcohol dehydrogenase (ADH) from Saccharomyces cerevisiae onto carboxymethyl dextran (CMD) coated magnetic nanoparticles (CMD-MNPs) activated with epoxy groups, using epichlorohydrin (EClH). EClH was used as an activating agent to bind ADH molecules on the surface of CMD-MNPs. Optimal immobilization conditions (activating agent concentration, temperature, rotation speed, medium pH, immobilization time and enzyme concentration) were set to obtain the highest expressed activity of the immobilized enzyme. ADH that was immobilized onto epoxy-activated CMD-MNPs (ADH-CMD-MNPs) maintained 90% of the expressed activity. Thermal stability of ADH-CMD-MNPS after 24 h at 20 °C and 40 °C yielded 79% and 80% of initial activity, respectively, while soluble enzyme activity was only 19% at 20 °C and the enzyme was non-active at 40 °C. Expressed activity of ADH-CMD-MNPs after 21 days of storage at 4 °C was 75%. Kinetic parameters (KM, vmax) of soluble and immobilized ADH were determined, resulting in 125 mM and 1.2 µmol/min for soluble ADH, and in 73 mM and 4.7 µmol/min for immobilized ADH.
Collapse
|
8
|
Co-Immobilization and Co-Localization of Oxidases and Catalases: Catalase from Bordetella Pertussis Fused with the Zbasic Domain. Catalysts 2020. [DOI: 10.3390/catal10070810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Oxidases catalyze selective oxidations by using molecular oxygen as an oxidizing agent. This process promotes the release of hydrogen peroxide, an undesirable byproduct. The instantaneous elimination of hydrogen peroxide can be achieved by co-immobilization and co-localization of the oxidase and an auxiliary catalase inside the porous structure of solid support. In this paper, we proposed that catalase from Bordetella pertussis fused with a small domain (Zbasic) as an excellent auxiliary enzyme. The enzyme had a specific activity of 23 U/mg, and this was almost six-fold higher than the one of the commercially available catalases from bovine liver. The Zbasic domain was fused to the four amino termini of this tetrameric enzyme. Two domains were close in one hemisphere of the enzyme molecule, and the other two were close in the opposite hemisphere. In this way, each hemisphere contained 24 residues with a positive charge that was very useful for the purification of the enzyme via cationic exchange chromatography. In addition to this, each hemisphere contained 10 Lys residues that were very useful for a rapid and intense multipoint covalent attachment on highly activated glyoxyl supports. In fact, 190 mg of the enzyme was immobilized on one gram of glyoxyl-10% agarose gel. The ratio catalase/oxidase able to instantaneously remove more than 93% of the released hydrogen peroxide was around 5–6 mg of catalase per mg of oxidase. Thirty milligrams of amine oxidase and 160 mg of catalase were co-immobilized and co-localized per gram of glyoxyl-agarose 10BCL (10% beads cross-linked) support. This biocatalyst eliminated biogenic amines (putrescine) 80-fold faster than a biocatalyst of the same oxidase co-localized with the commercial catalase from bovine liver.
Collapse
|
9
|
García-García P, Guisan JM, Fernandez-Lorente G. A mild intensity of the enzyme-support multi-point attachment promotes the optimal stabilization of mesophilic multimeric enzymes: Amine oxidase from Pisum sativum. J Biotechnol 2020; 318:39-44. [PMID: 32413366 DOI: 10.1016/j.jbiotec.2020.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 04/09/2020] [Accepted: 04/11/2020] [Indexed: 12/15/2022]
Abstract
Stabilization of dimeric enzymes requires the stabilization of the quaternary structure as well as the 3D one. Both subunits may be easily immobilized on a highly activated support. Additional stabilization of the 3D structure may be achieved via multipoint covalent attachment (MCA) on highly activated supports. In the case of monomeric enzymes or thermophilic dimeric ones, the optimal stabilization is obtained via the most intense MCA and it is associated to a small loss of catalytic activity. However, in the case of mesophilic enzymes, a very intense MCA of both subunits may promote negative effects, e.g., associated to distortions of the assembly between subunits and a subsequent very important loss of catalytic activity. A dimeric mesophilic amine oxidase from P.sativum was stabilized by MCA on glyoxyl-agarose. Both subunits were covalently immobilized on the support through the region with the highest density in Lys residues. In addition to that, an interesting activity/stabilization binomial was obtained after only 3 h of enzyme-support multiinteraction (50 % of activity/350 fold stabilization). However, after 24 h of enzyme-support multi-interaction this binomial activity-stabilization decreased down to 30/150. A moderate multiinteraction seems to be the optimal strategy for immobilization-stabilization of mesophilic dimeric enzymes and it promotes moderate losses of activity and interesting stabilizations against the combined effect of heat, acid pH and ethanol. The control of the intensity of enzyme-support multi-interactions becomes now strictly necessary.
Collapse
Affiliation(s)
- Paz García-García
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9. UAM Campus, Cantoblanco, 28049, Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP, CSIC), Marie Curie, 2. UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| | - Gloria Fernandez-Lorente
- Laboratory of Microbiology and Food Biocatalysis, Institute of Food Science Research (CIAL, CSIC-UAM), Nicolás Cabrera, 9. UAM Campus, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
10
|
High stabilization of immobilized Rhizomucor miehei lipase by additional coating with hydrophilic crosslinked polymers: Poly-allylamine/Aldehyde–dextran. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.02.026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
11
|
Trobo-Maseda L, H Orrego A, Guisan JM, Rocha-Martin J. Coimmobilization and colocalization of a glycosyltransferase and a sucrose synthase greatly improves the recycling of UDP-glucose: Glycosylation of resveratrol 3-O-β-D-glucoside. Int J Biol Macromol 2020; 157:510-521. [PMID: 32344088 DOI: 10.1016/j.ijbiomac.2020.04.120] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/14/2020] [Accepted: 04/17/2020] [Indexed: 02/02/2023]
Abstract
Glycosylation is one of the most efficient biocompatible methodologies to enhance the water solubility of natural products, and therefore their bioavailability. The excellent regio- and stereoselectivity of nucleotide sugar-dependent glycosyltransferases enables single-step glycosylations at specific positions of a broad variety of acceptor molecules without the requirement of protection/deprotection steps. However, the need for stoichiometric quantities of high-cost substrates, UDP-sugars, is a limiting factor for its use at an industrial scale. To overcome this challenge, here we report tailor-made coimmobilization and colocalization procedures to assemble a bi-enzymatic cascade composed of a glycosyltransferase and a sucrose synthase for the regioselective 5-O-β-D-glycosylation of piceid with in situ cofactor regeneration. Coimmobilization and colocalization of enzymes was achieved by performing slow immobilization of both enzymes inside the porous support. The colocalization of both enzymes within the porous structure of a solid support promoted an increase in the overall stability of the bi-enzymatic system and improved 50-fold the efficiency of piceid glycosylation compared with the non-colocalized biocatalyst. Finally, piceid conversion to resveratrol 3,5-diglucoside was over 90% after 6 cycles using the optimal biocatalyst and was reused in up to 10 batch reaction cycles accumulating a TTN of 91.7 for the UDP recycling.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Jose M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
12
|
Enzyme immobilization on porous chitosan hydrogel capsules formed by anionic surfactant gelation. Biotechnol Lett 2020; 42:845-852. [PMID: 32006352 DOI: 10.1007/s10529-020-02829-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
OBJECTIVES Sodium dodecyl sulfate (SDS)-chitosan hydrogels have been employed for adsorption of anionic dyes and metallic substances. Two mutant forms of Thermoanaerobacter ethanolicus alcohol dehydrogenase (TeSADH) were used as model enzymes to develop a novel enzyme immobilization technique employing newly formulated porous chitosan hydrogels. RESULTS The enzyme immobilized on chitosan hydrogel capsules formed by 5 g/l SDS gelation and subsequent treatment with 0.05 M NaOH was 28-35% higher in NADPH production than that formed by 20 g/l SDS gelation only under the same conditions. A 48-h asymmetric biphasic reduction of acetophenone with immobilized TeSADH enzyme at 50 °C showed 68% increase in (R)-1-phenylethanol production than the free enzyme. Compared to the free enzyme which denatured and lost its activity at 80 °C, the immobilized enzyme retained about 25% of its initial activity after 2-h incubation. CONCLUSION In contrast to the conventional chitosan hydrogel which suffers thermal and operational stability, the newly formulated porous chitosan hydrogel capsules have excellent enzyme loading efficiency and stable at harsh temperatures. Especially, this newly developed enzyme immobilization method would be applicable for food processing.
Collapse
|
13
|
Laccase Immobilized onto Zirconia⁻Silica Hybrid Doped with Cu 2+ as an Effective Biocatalytic System for Decolorization of Dyes. MATERIALS 2019; 12:ma12081252. [PMID: 30995753 PMCID: PMC6514565 DOI: 10.3390/ma12081252] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
Nowadays, novel and advanced methods are being sought to efficiently remove dyes from wastewaters. These compounds, which mainly originate from the textile industry, may adversely affect the aquatic environment as well as living organisms. Thus, in presented study, the synthesized ZrO2–SiO2 and Cu2+-doped ZrO2–SiO2 oxide materials were used for the first time as supports for laccase immobilization, which was carried out for 1 h, at pH 5 and 25 °C. The materials were thoroughly characterized before and after laccase immobilization with respect to electrokinetic stability, parameters of the porous structure, morphology and type of surface functional groups. Additionally, the immobilization yields were defined, which reached 86% and 94% for ZrO2–SiO2–laccase and ZrO2–SiO2/Cu2+–laccase, respectively. Furthermore, the obtained biocatalytic systems were used for enzymatic decolorization of the Remazol Brilliant Blue R (RBBR) dye from model aqueous solutions, under various reaction conditions (time, temperature, pH). The best conditions of the decolorization process (24 h, 30 °C and pH = 4) allowed to achieve the highest decolorization efficiencies of 98% and 90% for ZrO2–SiO2–laccase and ZrO2–SiO2/Cu2+–laccase, respectively. Finally, it was established that the mortality of Artemia salina in solutions after enzymatic decolorization was lower by approx. 20% and 30% for ZrO2–SiO2–laccase and ZrO2–SiO2/Cu2+–laccase, respectively, as compared to the solution before enzymatic treatment, which indicated lower toxicity of the solution. Thus, it should be clearly stated that doping of the oxide support with copper ions positively affects enzyme stability, activity and, in consequence, the removal efficiency of the RBBR dye.
Collapse
|
14
|
Cross-Linking with Polyethylenimine Confers Better Functional Characteristics to an Immobilized β-glucosidase from Exiguobacterium antarcticum B7. Catalysts 2019. [DOI: 10.3390/catal9030223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
β-glucosidases are ubiquitous, well-characterized and biologically important enzymes with considerable uses in industrial sectors. Here, a tetrameric β-glucosidase from Exiguobacterium antarcticum B7 (EaBglA) was immobilized on different activated agarose supports followed by post-immobilization with poly-functional macromolecules. The best result was obtained by the immobilization of EaBglA on metal glutaraldehyde-activated agarose support following cross-linking with polyethylenimine. Interestingly, the immobilized EaBglA was 46-fold more stable than its free form and showed optimum pH in the acidic region, with high catalytic activity in the pH range from 3 to 9, while the free EaBglA showed catalytic activity in a narrow pH range (>80% at pH 6.0–8.0) and optimum pH at 7.0. EaBglA had the optimum temperature changed from 30 °C to 50 °C with the immobilization step. The immobilized EaBglA showed an expressive adaptation to pH and it was tolerant to ethanol and glucose, indicating suitable properties involving the saccharification process. Even after 9 cycles of reuse, the immobilized β-glucosidase retained about 100% of its initial activity, demonstrating great operational stability. Hence, the current study describes an efficient strategy to increase the functional characteristics of a tetrameric β-glucosidase for future use in the bioethanol production.
Collapse
|
15
|
Shinde P, Musameh M, Gao Y, Robinson AJ, Kyratzis I(L. Immobilization and stabilization of alcohol dehydrogenase on polyvinyl alcohol fibre. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2018; 19:e00260. [PMID: 30003052 PMCID: PMC6041358 DOI: 10.1016/j.btre.2018.e00260] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 05/12/2018] [Accepted: 05/24/2018] [Indexed: 12/21/2022]
Abstract
A polyvinyl alcohol (PVA) fibrous carrier has been chemically modified for the immobilization of yeast alcohol dehydrogenase (ADH) with an aim to increase its stability over a wide pH range, prolong its activity upon storage, and enhance its reusability. The strategy for immobilization involved functionalization of the fibrous carrier with chloropropinoyl chloride followed by amination with ethylenediamine. Tethering of the ADH enzyme to the PVA scaffold was achieved with glutaraldehyde. The activity profile of the immobilized enzyme was compared to soluble enzyme as a function of pH, temperature and reusability. The immobilization of ADH on PVA fibrous carrier shifted the optimal reaction pH from 7 to 9, and improved the thermostability at 60 °C. Furthermore, the immobilized enzyme retained 60% of its original activity after eight cycles of reuse. These results demonstrate that PVA based textiles can serve as a flexible, reusable carrier for enzyme immobilization.
Collapse
Affiliation(s)
- Priydarshani Shinde
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
- School of Chemistry, Monash University, Clayton, VIC 3800, Australia
| | | | - Yuan Gao
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | | | | |
Collapse
|
16
|
Romero-Fernández M, Moreno-Perez S, Martins de Oliveira S, Santamaría RI, Guisan JM, Rocha-Martin J. Preparation of a robust immobilized biocatalyst of β-1,4-endoxylanase by surface coating with polymers for production of xylooligosaccharides from different xylan sources. N Biotechnol 2018; 44:50-58. [DOI: 10.1016/j.nbt.2018.04.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 04/24/2018] [Accepted: 04/24/2018] [Indexed: 01/01/2023]
|
17
|
Ooya T, Ogawa T, Takeuchi T. Temperature-induced recovery of a bioactive enzyme using polyglycerol dendrimers: correlation between bound water and protein interaction. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:701-715. [DOI: 10.1080/09205063.2018.1434988] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tooru Ooya
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | - Takaya Ogawa
- Graduate School of Engineering, Kobe University, Kobe, Japan
| | | |
Collapse
|
18
|
Guo Y, Zhu X, Fang F, Hong X, Wu H, Chen D, Huang X. Immobilization of Enzymes on a Phospholipid Bionically Modified Polysulfone Gradient-Pore Membrane for the Enhanced Performance of Enzymatic Membrane Bioreactors. Molecules 2018; 23:E144. [PMID: 29324678 PMCID: PMC6017099 DOI: 10.3390/molecules23010144] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/05/2018] [Accepted: 01/06/2018] [Indexed: 11/17/2022] Open
Abstract
Enzymatic membrane bioreactors (EMBRs), with synergistic catalysis-separation performance, have increasingly been used for practical applications. Generally, the membrane properties, particularly the pore structures and interface interactions, have a significant impact on the catalytic efficiency of the EMBR. Therefore, a biomimetic interface based on a phospholipid assembled onto a polysulfone hollow-fiber membrane with perfect radial gradient pores (RGM-PSF) has been prepared in this work to construct a highly efficient and stable EMBR. On account of the special pore structure of the RGM-PSF with the apertures decreasing gradually from the inner side to the outer side, the enzyme molecules could be evenly distributed on the three-dimensional skeleton of the membrane. In addition, the supported phospholipid layer in the membrane, prepared by physical adsorption, was used for the immobilization of the enzymes, which provides sufficient linkage to prevent the enzymes from leaching but also accommodates as many enzyme molecules as possible to retain high bioactivity. The properties of the EMBR were studied by using lipase from Candida rugosa for the hydrolysis of glycerol triacetate as a model. Energy-dispersive X-ray and circular dichroism spectroscopy were employed to observe the effect of lecithin on the membrane and structure changes in the enzyme, respectively. The operational conditions were investigated to optimize the performance of the EMBR by testing substrate concentrations from 0.05 to 0.25 M, membrane fluxes from 25.5 to 350.0 L·m-2·h-1, and temperatures from 15 to 55 °C. As a result, the obtained EMBR showed a desirable performance with 42% improved enzymatic activity and 78% improved catalytic efficiency relative to the unmodified membrane.
Collapse
Affiliation(s)
- Yizong Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xueyan Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Fei Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Xiao Hong
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Huimin Wu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China.
| | - Dajing Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| | - Xiaojun Huang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China. @zju.edu.cn
| |
Collapse
|
19
|
Trobo-Maseda L, Orrego AH, Moreno-Pérez S, Fernández-Lorente G, Guisan JM, Rocha-Martin J. Stabilization of multimeric sucrose synthase from Acidithiobacillus caldus via immobilization and post-immobilization techniques for synthesis of UDP-glucose. Appl Microbiol Biotechnol 2017; 102:773-787. [PMID: 29177938 DOI: 10.1007/s00253-017-8649-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/06/2017] [Accepted: 11/12/2017] [Indexed: 02/06/2023]
Abstract
Sucrose synthases (SuSys) have been attracting great interest in recent years in industrial biocatalysis. They can be used for the cost-effective production of uridine 5'-diphosphate glucose (UDP-glucose) or its in situ recycling if coupled to glycosyltransferases on the production of glycosides in the food, pharmaceutical, nutraceutical, and cosmetic industry. In this study, the homotetrameric SuSy from Acidithiobacillus caldus (SuSyAc) was immobilized-stabilized on agarose beads activated with either (i) glyoxyl groups, (ii) cyanogen bromide groups, or (iii) heterogeneously activated with both glyoxyl and positively charged amino groups. The multipoint covalent immobilization of SuSyAc on glyoxyl agarose at pH 10.0 under optimized conditions provided a significant stabilization factor at reaction conditions (pH 5.0 and 45 °C). However, this strategy did not stabilize the enzyme quaternary structure. Thus, a post-immobilization technique using functionalized polymers, such as polyethyleneimine (PEI) and dextran-aldehyde (dexCHO), was applied to cross-link all enzyme subunits. The coating of the optimal SuSyAc immobilized glyoxyl agarose with a bilayer of 25 kDa PEI and 25 kDa dexCHO completely stabilized the quaternary structure of the enzyme. Accordingly, the combination of immobilization and post-immobilization techniques led to a biocatalyst 340-fold more stable than the non-cross-linked biocatalyst, preserving 60% of its initial activity. This biocatalyst produced 256 mM of UDP-glucose in a single batch, accumulating 1 M after five reaction cycles. Therefore, this immobilized enzyme can be of great interest as a biocatalyst to synthesize UDP-glucose.
Collapse
Affiliation(s)
- Lara Trobo-Maseda
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Alejandro H Orrego
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - Sonia Moreno-Pérez
- Pharmacy and Biotechnology Department, School of Biomedical Sciences, Universidad Europea, 28670, Madrid, Spain
| | - Gloria Fernández-Lorente
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain
| | - José M Guisan
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| | - Javier Rocha-Martin
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049, Madrid, Spain.
| |
Collapse
|
20
|
Enhanced long-chain fatty alcohol oxidation by immobilization of alcohol dehydrogenase from S. cerevisiae. Appl Microbiol Biotechnol 2017; 102:237-247. [DOI: 10.1007/s00253-017-8598-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 11/25/2022]
|
21
|
Orrego AH, Trobo-Maseda L, Rocha-Martin J, Guisan JM. Immobilization-stabilization of a complex multimeric sucrose synthase from Nitrosomonas europaea. Synthesis of UDP-glucose. Enzyme Microb Technol 2017; 105:51-58. [PMID: 28756861 DOI: 10.1016/j.enzmictec.2017.06.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 05/17/2017] [Accepted: 06/11/2017] [Indexed: 11/25/2022]
Abstract
Sucrose synthases (SuSys) can be used to synthesize cost-effective uridine 5'-diphosphate glucose (UDP-glc) or can be coupled to glycosyltransferases (GTs) for the continuous recycling of UDP-glc. In this study, we present the first report of the immobilization-stabilization of a SuSy by multipoint covalent attachment. This stabilization strategy is very complex for multimeric enzymes because a very intense multipoint attachment can promote a dramatic loss of activity and/or stability. The homotetrameric SuSy from Nitrosomonas europaea (SuSyNe) was immobilized on a glyoxyl agarose support through two different orientations. The first occurred at pH 8.5 through the surface area containing the greatest number of amino termini from several enzyme subunits. The second orientation occurred at pH 10 through the region of the whole enzyme containing the highest number of Lys residues. The multipoint covalent immobilization of SuSy on glyoxyl agarose at pH 10 provided a very significant stabilization factor under reaction conditions (almost 1000-fold more stable than soluble enzyme). Unfortunately, this important enzyme rigidification led to a dramatic loss of catalytic activity. A less stabilized conjugate, which was 65-fold more stable than the soluble form, preserved 64% of its initial catalytic activity. This derivative could be used for 3 reaction cycles and yielded approximately 210mM of UDP-glc per cycle. This optimal biocatalyst was modified with a polycationic polymer, polyethyleneimine (PEI), increasing its stability in the presence of the organic co-solvents necessary to glycosylate apolar antioxidants by GTs coupled to SuSy.
Collapse
Affiliation(s)
- Alejandro H Orrego
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Lara Trobo-Maseda
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain
| | - Javier Rocha-Martin
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| | - Jose M Guisan
- Departament of Biocatalysis. Institute of Catalysis and Petrochemistry (ICP) CSIC, Campus UAM, Cantoblanco, 28049 Madrid, Spain..
| |
Collapse
|
22
|
Franco DG, Spalanzani RN, Lima EE, Marchetti CR, Silva PO, Masui DC, Giannesi GC, Zanoelo FF. Biochemical properties of a serine protease from Aspergillus flavus and application in dehairing. BIOCATAL BIOTRANSFOR 2017. [DOI: 10.1080/10242422.2017.1322584] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Daniel Guerra Franco
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| | - Regiane Nogueira Spalanzani
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| | - Emmly Ernesto Lima
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| | - Clarice Rossato Marchetti
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| | - Patrícia Oliveira Silva
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| | - Douglas Chodi Masui
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| | - Giovana Cristina Giannesi
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| | - Fabiana Fonseca Zanoelo
- Laboratory of Biochemistry and Microorganisms, CCBS – Federal University of Mato Grosso of Sul/UFMS, Campo Grande, Brazil
| |
Collapse
|
23
|
Improvingthecatalytic properties and stability of immobilized γ-glutamyltranspeptidase by post-immobilization with Pharmalyte MT 8-10.5. Int J Biol Macromol 2017; 105:1581-1586. [PMID: 28414108 DOI: 10.1016/j.ijbiomac.2017.04.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 03/22/2017] [Accepted: 04/11/2017] [Indexed: 11/20/2022]
Abstract
γ-Glutamyltranspeptidase (GGT) is a dimeric protein that specifically catalyzes the transfer of γ-glutamyl in the optimum pH range of 8.5-9.0, but has poor in vitro stability under the alkaline conditions. In the present work, GGT was immobilized on a mesoporoustitania oxide whisker (MTWs) carrier to afford MTWs-GGT that was further modified with PharmalyteMT (Phar) 8.0-10.5 to yield MTWs-GGT-Phar. Phar absorbed on MTWs-GGT to form a buffering layer with an isoelectric point of ∼9.2 that isolated the immobilized enzyme from the liquid bulk and significantly in proved the pH tolerance and stability of the immobilized GGT. The MTWs-GGT-Phar exhibited a stable enzyme activity in the pH range of 6.0-11.0 and an optimum temperature 10°C higher than GGT. Its pH stability at pH 11.0 and thermal stability at 50°C were respectively 23.7 times and 19.4 times higher than those of GGT. In addition, the affinity constant of MTWs-GGT-Phar towards GpNA (Km) was 0.597mM, slightly lower than that of free GGT, indicating that Phar had a protective effect on the structure of GGT.
Collapse
|
24
|
Virgen-Ortíz JJ, dos Santos JCS, Berenguer-Murcia Á, Barbosa O, Rodrigues RC, Fernandez-Lafuente R. Polyethylenimine: a very useful ionic polymer in the design of immobilized enzyme biocatalysts. J Mater Chem B 2017; 5:7461-7490. [DOI: 10.1039/c7tb01639e] [Citation(s) in RCA: 172] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review discusses the possible roles of polyethylenimine (PEI) in the design of improved immobilized biocatalysts from diverse perspectives.
Collapse
Affiliation(s)
- Jose J. Virgen-Ortíz
- CONACYT-Centro de Investigación en Alimentación y Desarrollo
- A.C. (CIAD)-Consorcio CIDAM
- 58341 Morelia
- Mexico
| | - José C. S. dos Santos
- Instituto de Engenharias e Desenvolvimento Sustentável
- Universidade da Integração Internacional da Lusofonia Afro-Brasileira
- Acarape
- Brazil
| | - Ángel Berenguer-Murcia
- Instituto Universitario de Materiales
- Departamento de Química Inorgánica
- Universidad de Alicante
- Campus de San Vicente del Raspeig
- Ap. 99-03080 Alicante
| | - Oveimar Barbosa
- Departamento de Química
- Facultad de Ciencias
- Universidad del Tolima
- Ibagué
- Colombia
| | - Rafael C. Rodrigues
- Biocatalysis and Enzyme Technology Lab
- Institute of Food Science and Technology
- Federal University of Rio Grande do Sul
- Av. Bento Gonçalves
- Porto Alegre
| | | |
Collapse
|
25
|
Jackson E, López-Gallego F, Guisan J, Betancor L. Enhanced stability of l -lactate dehydrogenase through immobilization engineering. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
26
|
Covalent immobilization of Candida methylica formate dehydrogenase on short spacer arm aldehyde group containing supports. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.05.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Balcão VM, Vila MMDC. Structural and functional stabilization of protein entities: state-of-the-art. Adv Drug Deliv Rev 2015; 93:25-41. [PMID: 25312675 DOI: 10.1016/j.addr.2014.10.005] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 08/03/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022]
Abstract
Within the context of biomedicine and pharmaceutical sciences, the issue of (therapeutic) protein stabilization assumes particular relevance. Stabilization of protein and protein-like molecules translates into preservation of both structure and functionality during storage and/or targeting, and such stabilization is mostly attained through establishment of a thermodynamic equilibrium with the (micro)environment. The basic thermodynamic principles that govern protein structural transitions and the interactions of the protein molecule with its (micro)environment are, therefore, tackled in a systematic fashion. Highlights are given to the major classes of (bio)therapeutic molecules, viz. enzymes, recombinant proteins, (macro)peptides, (monoclonal) antibodies and bacteriophages. Modification of the microenvironment of the biomolecule via multipoint covalent attachment onto a solid surface followed by hydrophilic polymer co-immobilization, or physical containment within nanocarriers, are some of the (latest) strategies discussed aiming at full structural and functional stabilization of said biomolecules.
Collapse
Affiliation(s)
- Victor M Balcão
- LaBNUS - Biomaterials and Nanotechnology Laboratory, i(bs)(2) - intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, SP, Brazil; CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal.
| | - Marta M D C Vila
- LaBNUS - Biomaterials and Nanotechnology Laboratory, i(bs)(2) - intelligent biosensing and biomolecule stabilization research group, University of Sorocaba, Sorocaba, SP, Brazil
| |
Collapse
|
28
|
Increase of stability of oleate hydratase by appropriate immobilization technique and conditions. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.molcatb.2015.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Jadhav SB, Bankar SB, Granström T, Ojamo H, Singhal RS, Survase SA. Enhanced stability of alcohol dehydrogenase by non-covalent interaction with polysaccharides. Appl Microbiol Biotechnol 2014; 98:6307-16. [DOI: 10.1007/s00253-014-5579-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 01/25/2014] [Accepted: 01/28/2014] [Indexed: 10/25/2022]
|
30
|
Protein adsorption to poly(ethylenimine)-modified Sepharose FF: I. A critical ionic capacity for drastically enhanced capacity and uptake kinetics. J Chromatogr A 2013; 1305:76-84. [DOI: 10.1016/j.chroma.2013.07.014] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 06/30/2013] [Accepted: 07/02/2013] [Indexed: 11/18/2022]
|
31
|
Quaglia D, Pori M, Galletti P, Emer E, Paradisi F, Giacomini D. His-tagged Horse Liver Alcohol Dehydrogenase: Immobilization and application in the bio-based enantioselective synthesis of (S)-arylpropanols. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.03.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Production of xylo-oligosaccharides by immobilized-stabilized derivatives of endo-xylanase from Streptomyces halstedii. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Effect of Different Variables on the Efficiency of the Baker's Yeast Cell Disruption Process to Obtain Alcohol Dehydrogenase Activity. Appl Biochem Biotechnol 2013; 169:1039-55. [DOI: 10.1007/s12010-012-0056-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 12/26/2012] [Indexed: 11/26/2022]
|