1
|
Benatti ALT, Polizeli MDLTDM. Lignocellulolytic Biocatalysts: The Main Players Involved in Multiple Biotechnological Processes for Biomass Valorization. Microorganisms 2023; 11:microorganisms11010162. [PMID: 36677454 PMCID: PMC9864444 DOI: 10.3390/microorganisms11010162] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/10/2023] Open
Abstract
Human population growth, industrialization, and globalization have caused several pressures on the planet's natural resources, culminating in the severe climate and environmental crisis which we are facing. Aiming to remedy and mitigate the impact of human activities on the environment, the use of lignocellulolytic enzymes for biofuel production, food, bioremediation, and other various industries, is presented as a more sustainable alternative. These enzymes are characterized as a group of enzymes capable of breaking down lignocellulosic biomass into its different monomer units, making it accessible for bioconversion into various products and applications in the most diverse industries. Among all the organisms that produce lignocellulolytic enzymes, microorganisms are seen as the primary sources for obtaining them. Therefore, this review proposes to discuss the fundamental aspects of the enzymes forming lignocellulolytic systems and the main microorganisms used to obtain them. In addition, different possible industrial applications for these enzymes will be discussed, as well as information about their production modes and considerations about recent advances and future perspectives in research in pursuit of expanding lignocellulolytic enzyme uses at an industrial scale.
Collapse
|
2
|
Poria V, Saini JK, Singh S, Nain L, Kuhad RC. Arabinofuranosidases: Characteristics, microbial production, and potential in waste valorization and industrial applications. BIORESOURCE TECHNOLOGY 2020; 304:123019. [PMID: 32089440 DOI: 10.1016/j.biortech.2020.123019] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 02/09/2020] [Accepted: 02/11/2020] [Indexed: 05/15/2023]
Abstract
Alpha-L-arabinofuranoside arabinofuranohydrolase (ARA), more commonly known as alpha-L-arabinofuranosidase (E.C. number 3.2.1.55), is a hydrolytic enzyme, catalyzing the cleavage of alpha-L-arabinose by acting on the non-reducing ends of alpha-L-arabinofuranosides, alpha-L-arabinans containing (1,3)- and/or (1,5)-linked arabinoxylans and arabinogalactans. ARA functions as debranching enzyme removing arabinose substituents from arabinoxylan and arabinoxylooligomers, thereby, boosting the hydrolysis of arabinoxylan fraction of hemicellulose and improving bioconversion of lignocellulosic biomass. Previously, comprehensive information on this enzyme has not been reviewed thoroughly. Therefore, the main aim of this review is to highlight the important properties of this interesting enzyme, microorganisms used for its production, and enhanced production using genetic engineering approach. An account on synergism with other biomass hydrolyzing enzymes and various industrial applications of this enzyme has also been provided along with an outlook on further research and development.
Collapse
Affiliation(s)
- Vikram Poria
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Jitendra Kumar Saini
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India.
| | - Lata Nain
- Division of Microbiology, Indian Agricultural Research Institute, New Delhi PIN-110012, India
| | - Ramesh Chander Kuhad
- Central University of Haryana, Mahendergarh, Haryana PIN-123031, India; Lignocellulose Biotechnology Laboratory, Department of Microbiology, University of Delhi South Campus, New Delhi PIN-110021, India
| |
Collapse
|
4
|
Zubieta MP, Contesini FJ, Rubio MV, Gonçalves AEDSS, Gerhardt JA, Prade RA, Damasio ARDL. Protein profile in Aspergillus nidulans recombinant strains overproducing heterologous enzymes. Microb Biotechnol 2018; 11:346-358. [PMID: 29316319 PMCID: PMC5812239 DOI: 10.1111/1751-7915.13027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 10/23/2017] [Accepted: 10/26/2017] [Indexed: 01/01/2023] Open
Abstract
Filamentous fungi are robust cell factories and have been used for the production of large quantities of industrially relevant enzymes. However, the production levels of heterologous proteins still need to be improved. Therefore, this article aimed to investigate the global proteome profiling of Aspergillus nidulans recombinant strains in order to understand the bottlenecks of heterologous enzymes production. About 250, 441 and 424 intracellular proteins were identified in the control strain Anid_pEXPYR and in the recombinant strains Anid_AbfA and Anid_Cbhl respectively. In this context, the most enriched processes in recombinant strains were energy pathway, amino acid metabolism, ribosome biogenesis, translation, endoplasmic reticulum and oxidative stress, and repression under secretion stress (RESS). The global protein profile of the recombinant strains Anid_AbfA and Anid_Cbhl was similar, although the latter strain secreted more recombinant enzyme than the former. These findings provide insights into the bottlenecks involved in the secretion of recombinant proteins in A. nidulans, as well as in regard to the rational manipulation of target genes for engineering fungal strains as microbial cell factories.
Collapse
Affiliation(s)
- Mariane Paludetti Zubieta
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Fabiano Jares Contesini
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Marcelo Ventura Rubio
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | | | - Jaqueline Aline Gerhardt
- Department of Biochemistry and Tissue BiologyInstitute of BiologyUniversity of Campinas (UNICAMP)CampinasSPBrazil
| | - Rolf Alexander Prade
- Department of Microbiology and Molecular GeneticsOklahoma State UniversityStillwaterOKUSA
| | | |
Collapse
|
6
|
Lang C, Yang R, Yang Y, Gao B, Zhao L, Wei W, Wang H, Matsukawa S, Xie J, Wei D. An Acid-Adapted Endo-α-1,5-L-arabinanase for Pectin Releasing. Appl Biochem Biotechnol 2016; 180:900-916. [PMID: 27246002 DOI: 10.1007/s12010-016-2141-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 05/13/2016] [Indexed: 10/21/2022]
Abstract
An arabinanase gene was cloned by overlap-PCR from Penicillium sp. Y702 and expressed in Pichia pastoris. The recombinant enzyme was named AbnC702 with 20 U/mg of endo-arabinanase activity toward linear α-1,5-L-arabinan. The optimal pH and temperature of AbnC702 were 5.0 and 50 °C, respectively. The recombinant AbnC702 was highly stable at pH 5.0-7.0 and 50 °C. It could retain about 72.3 % of maximum specific activity at pH 5.0 after incubation for 2.5 h, which indicated AbnC702 was an acid-adapted enzyme. The K m and V max values were 24.8 ± 4.7 mg/ml and 88.5 ± 5.6 U/mg, respectively. A three-dimensional structure of AbnC702 was made by homology modeling, and the counting of acidic/basic amino residues within the region of 10 Å around the active site, as well the hydrogen bonds within the area of 5 Å around the active site, might theoretically interpret the acid adaptability of AbnC702. Analysis of hydrolysis products by thin layer chromatography (TLC) combined with high-performance liquid chromatography (HPLC) verified that the recombinant AbnC702 was an endo-1,5-α-L-arabinanase, which yielded arabinobiose and arabinotriose as major products. AbnC702 was applied in pectin extraction from apple pomace with synergistic action of α-L-arabinofuranosidase.
Collapse
Affiliation(s)
- Chong Lang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Rujian Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Ying Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Li Zhao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Wei Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China
| | - Shingo Matsukawa
- Department of Food Science and Technology, Tokyo University of Marine Science and Technology, Tokyo, 108-8477, Japan
| | - Jingli Xie
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China. .,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China.
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Department of Food Science and Technology, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, People's Republic of China.,Shanghai Collaborative Innovation Center for Biomanufacturing (SCICB), Shanghai, 200237, People's Republic of China
| |
Collapse
|
7
|
Lima MS, Damasio ARDL, Crnkovic PM, Pinto MR, da Silva AM, da Silva JCR, Segato F, de Lucas RC, Jorge JA, Polizeli MDLTDM. Co-cultivation of Aspergillus nidulans Recombinant Strains Produces an Enzymatic Cocktail as Alternative to Alkaline Sugarcane Bagasse Pretreatment. Front Microbiol 2016; 7:583. [PMID: 27199917 PMCID: PMC4848300 DOI: 10.3389/fmicb.2016.00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Plant materials represent a strategic energy source because they can give rise to sustainable biofuels through the fermentation of their carbohydrates. A clear example of a plant-derived biofuel resource is the sugar cane bagasse exhibiting 60-80% of fermentable sugars in its composition. However, the current methods of plant bioconversion employ severe and harmful chemical/physical pretreatments raising biofuel cost production and environmental degradation. Replacing these methods with co-cultivated enzymatic cocktails is an alternative. Here we propose a pretreatment for sugarcane bagasse using a multi-enzymatic cocktail from the co-cultivation of four Aspergillus nidulans recombinant strains. The co-cultivation resulted in the simultaneous production of GH51 arabinofuranosidase (AbfA), GH11 endo-1,4-xylanase (XlnA), GH43 endo-1,5-arabinanase (AbnA) and GH12 xyloglucan specific endo-β-1,4-glucanase (XegA). This core set of recombinant enzymes was more efficient than the alternative alkaline method in maintaining the cellulose integrity and exposing this cellulose to the following saccharification process. Thermogravimetric and differential thermal analysis revealed residual byproducts on the alkali pretreated biomass, which were not found in the enzymatic pretreatment. Therefore, the enzymatic pretreatment was residue-free and seemed to be more efficient than the applied alkaline method, which makes it suitable for bioethanol production.
Collapse
Affiliation(s)
- Matheus S Lima
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - André R de L Damasio
- Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas São Paulo, Brazil
| | - Paula M Crnkovic
- Department of Mechanical Engineering, University of São Paulo São Paulo, Brazil
| | - Marcelo R Pinto
- Laboratory of Biopathology and Molecular Biology, Uberaba University Uberaba, Brazil
| | | | - Jean C R da Silva
- Federal Institute of Education, Science and Technology of São Paulo São Paulo, Brazil
| | - Fernando Segato
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo São Paulo, Brazil
| | - Rosymar C de Lucas
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São PauloSão Paulo, Brazil; Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São PauloSão Paulo, Brazil
| | - João A Jorge
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| | - Maria de L T de M Polizeli
- Department of Biology, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo São Paulo, Brazil
| |
Collapse
|