1
|
Kim S, Lee H, Hong J, Kim SHL, Kwon E, Park TH, Hwang NS. Bone-Targeted Delivery of Cell-Penetrating-RUNX2 Fusion Protein in Osteoporosis Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301570. [PMID: 37574255 PMCID: PMC10558633 DOI: 10.1002/advs.202301570] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 07/20/2023] [Indexed: 08/15/2023]
Abstract
The onset of osteoporosis leads to a gradual decrease in bone density due to an imbalance between bone formation and resorption. To achieve optimal drug efficacy with minimal side effects, targeted drug delivery to the bone is necessary. Previous studies have utilized peptides that bind to hydroxyapatite, a mineral component of bone, for bone-targeted drug delivery. In this study, a hydroxyapatite binding (HAB) tag is fused to 30Kc19α-Runt-related transcription factor 2 (RUNX2) for bone-targeting. This recombinant protein can penetrate the nucleus of human mesenchymal stem cells (hMSCs) and act as a master transcription factor for osteogenesis. The HAB tag increases the binding affinity of 30Kc19α-RUNX2 to mineral deposition in mature osteoblasts and bone tissue, without affecting its osteogenic induction capability. In the osteoporosis mouse model, intravenous injection of HAB-30Kc19α-RUNX2 results in preferential accumulation in the femur and promotes bone formation while reducing toxicity in the spleen. These findings suggest that HAB-30Kc19α-RUNX2 may be a promising candidate for bone-targeted therapy in osteoporosis.
Collapse
Affiliation(s)
- Seoyeon Kim
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Haein Lee
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Jiyeon Hong
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Seung Hyun L. Kim
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Euntaek Kwon
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- BioMAX/N‐Bio InstituteInstitute of BioEngineerigSeoul National University1 Gwanakro, Gwanak‐guSeoul08826Republic of Korea
- Department of Nutritional Science and Food ManagementEwha Womans University52, Ewhayeodae‐gil, Seodaemun‐guSeoul03760Republic of Korea
| | - Nathaniel S. Hwang
- School of Chemical and Biological EngineeringInstitute of Chemical ProcessesSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- Interdisciplinary Program in BioengineeringSeoul National University1 Gwanak‐ro, Gwanak‐guSeoul08826Republic of Korea
- BioMAX/N‐Bio InstituteInstitute of BioEngineerigSeoul National University1 Gwanakro, Gwanak‐guSeoul08826Republic of Korea
| |
Collapse
|
2
|
Xu Y, Shen G, Wu J, Mao X, Jia L, Zhang Y, Xia Q, Lin Y. Vitellogenin receptor transports the 30K protein LP1 without cell-penetrating peptide, into the oocytes of the silkworm, Bombyx mori. Front Physiol 2023; 14:1117505. [PMID: 36776972 PMCID: PMC9908958 DOI: 10.3389/fphys.2023.1117505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 01/16/2023] [Indexed: 01/27/2023] Open
Abstract
Vitellogenin receptors (VgRs) transport vitellogenin (Vg) into oocytes, thereby promoting egg growth and embryonic development. VgRs recognize and transport multiple ligands in oviparous animals, but their role in insects is rarely reported. In this study, we investigated whether Bombyx mori VgR (BmVgR) binds and transports lipoprotein-1 (BmLP1) and lipoprotein-7 (BmLP7) of the 30 kDa lipoproteins (30 K proteins), which are essential for egg formation and embryonic development in B. mori. Protein sequence analysis showed BmLP7, similar to reported lipoprotein-3 (BmLP3), contains the cell-penetrating peptides and Cysteine position, while BmLP1 has not. Assays using Spodoptera frugiperda ovary cells (sf9) indicated the direct entry of BmLP7 into the cells, whereas BmLP1 failed to enter. However, co-immunoprecipitation (Co-IP) assays indicated that BmVgR could bind BmLP1. Western blotting and immunofluorescence assays further revealed that over-expressed BmVgR could transport BmLP1 into sf9 cells. Co-IP assays showed that SE11C (comprising LBD1+EGF1+OTC domains of BmVgR) or SE22C (comprising LBD2+EGF2+OTC domains of BmVgR) could bind BmLP1. Over-expressed SE11C or SE22C could also transport BmLP1 into sf9 cells. Western blotting revealed that the ability of SE11C to transport BmLP1 might be stronger than that of SE22C. In the vit mutant with BmVgR gene mutation (vit/vit), SDS-PAGE and western blotting showed the content of BmLP1 in the ovary, like BmVg, was lower than that in the normal silkworm. When transgenic with hsp70 promoter over-expressed BmVgR in the vit mutant, we found that the phenotype of the vit mutant was partly rescued after heat treatment. And contents of BmLP1 and BmVg in vit mutant over-expressed BmVgR were higher than in the vit mutant. We conclude that BmVgR and its two repeat domains could bind and transport BmLP1 into the oocytes of the silkworm, besides BmVg. These results will provide a reference for studying the molecular mechanism of VgR transporting ligands in insects.
Collapse
Affiliation(s)
- Yinying Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Jinxin Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Xueqin Mao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China
| | - Linbang Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China
| | - Ying Lin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China,Biological Science Research Center Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing, China,*Correspondence: Ying Lin,
| |
Collapse
|
3
|
Ryu J, Yang SJ, Son B, Lee H, Lee J, Joo J, Park HH, Park TH. Enhanced anti-cancer effect using MMP-responsive L-asparaginase fused with cell-penetrating 30Kc19 protein. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2022; 50:278-285. [DOI: 10.1080/21691401.2022.2126851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Jina Ryu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Sung Jae Yang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Boram Son
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
| | - Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jongmin Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
| | - Jinmyoung Joo
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, Republic of Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, Republic of Korea
- Education and Research Group for Biopharmaceutical Innovation Leader, Hanyang University, Seoul, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea
- BioMAX/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
4
|
Direct Conversion of Bovine Dermal Fibroblasts into Myotubes by Viral Delivery of Transcription Factor bMyoD. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12094688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Direct reprogramming of somatic cells to myoblasts and myotubes holds great potential for muscle development, disease modeling and regenerative medicine. According to recent studies, direct conversion of fibroblasts to myoblasts was performed by using a transcription factor, myoblast determination protein (MyoD), which belongs to a family of myogenic regulatory factors. Therefore, MyoD is considered to be a key driver in the generation of induced myoblasts. In this study, we compared the direct phenotypic conversion of bovine dermal fibroblasts (BDFs) into myoblasts and myotubes by supplementing a transcription factor, bovine MyoD (bMyoD), in the form of recombinant protein or the bMyoD gene, through retroviral vectors. As a result, the delivery of the bMyoD gene to BDFs was more efficient for inducing reprogramming, resulting in direct conversion to myoblasts and myotubes, when compared with protein delivery. BDFs cultured with retrovirus encoding bMyoD increased myogenic gene expression, such as MyoG, MYH3 and MYMK. In addition, the cells expressed myoblast or myotube-specific marker proteins, MyoG and Desmin, respectively. Our findings provide an informative tool for the myogenesis of domestic-animal-derived somatic cells via transgenic technology. By using this method, a new era of regenerative medicine and cultured meat is expected.
Collapse
|
5
|
Lee H, An YH, Kim TK, Ryu J, Park GK, Park MJ, Ko J, Kim H, Choi HS, Hwang NS, Park TH. Enhancement of Wound Healing Efficacy by Increasing the Stability and Skin-Penetrating Property of bFGF Using 30Kc19α-Based Fusion Protein. Adv Biol (Weinh) 2021; 5:e2000176. [PMID: 33724733 PMCID: PMC7996635 DOI: 10.1002/adbi.202000176] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/17/2020] [Indexed: 12/19/2022]
Abstract
The instability of recombinant basic fibroblast growth factor (bFGF) is a major disadvantage for its therapeutic use and means frequent applications to cells or tissues are required for sustained effects. Originating from silkworm hemolymph, 30Kc19α is a cell-penetrating protein that also has protein stabilization properties. Herein, it is investigated whether fusing 30Kc19α to bFGF can enhance the stability and skin penetration properties of bFGF, which may consequently increase its therapeutic efficacy. The fusion of 30Kc19α to bFGF protein increases protein stability, as confirmed by ELISA. 30Kc19α-bFGF also retains the biological activity of bFGF as it facilitates the migration and proliferation of fibroblasts and angiogenesis of endothelial cells. It is discovered that 30Kc19α can improve the transdermal delivery of a small molecular fluorophore through the skin of hairless mice. Importantly, it increases the accumulation of bFGF and further facilitates its translocation into the skin through follicular routes. Finally, when applied to a skin wound model in vivo, 30Kc19α-bFGF penetrates the dermis layer effectively, which promotes cell proliferation, tissue granulation, angiogenesis, and tissue remodeling. Consequently, the findings suggest that 30Kc19α improves the therapeutic functionalities of bFGF, and would be useful as a protein stabilizer and/or a delivery vehicle in therapeutic applications.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae Keun Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jina Ryu
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - G Kate Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Mihn Jeong Park
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hyunbum Kim
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Interdisciplinary Program in Bioengineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- BioMAX/N-Bio Institute, Institute of BioEngineering, Seoul National University, 1 Gwanakro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
6
|
Non-viral Gene Disruption by CRISPR/Cas9 Delivery Using Cell-permeable and Protein-stabilizing 30Kc19 Protein. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0068-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Lee H, Kim SHL, Yoon H, Ryu J, Park HH, Hwang NS, Park TH. Intracellular Delivery of Recombinant RUNX2 Facilitated by Cell-Penetrating Protein for the Osteogenic Differentiation of hMSCs. ACS Biomater Sci Eng 2020; 6:5202-5214. [PMID: 33455270 DOI: 10.1021/acsbiomaterials.0c00827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are a commonly used cell source for cell therapy and tissue engineering because of their easy accessibility and multipotency. Runt-related transcription factor 2 (RUNX2) is a master regulator of the osteogenic commitment of hMSCs. Either recombinant plasmid delivery or viral transduction has been utilized to activate RUNX2 gene expression for effective hMSC differentiation. In this study, recombinant RUNX2 fused with cell-penetrating 30Kc19α protein (30Kc19α-RUNX2) was delivered into hMSCs for osteogenic commitment. Fusion of recombinant RUNX2 with 30Kc19α resulted in successful delivery of the protein into cells and enhanced soluble expression of the protein. Intracellular delivery of the 30Kc19α-RUNX2 fusion protein enhanced the osteogenic differentiation of hMSCs in vitro. 30Kc19α-RUNX2 treatment resulted in increased ALP accumulation and elevated calcium deposition. Finally, implantation of hMSCs treated with 30Kc19α-RUNX2 showed osteogenesis via cell delivery into the subcutaneous tissue and bone regeneration in a cranial defect mouse model. Therefore, we suggest that 30Kc19α-RUNX2, an osteoinductive recombinant protein, is an efficient tool for bone tissue engineering.
Collapse
Affiliation(s)
- Haein Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hyun L Kim
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyungro Yoon
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Jina Ryu
- Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Interdisciplinary Program in Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,BioMax/N-Bio Institute, Institute of Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Hong S, Choi DW, Kim HN, Park CG, Lee W, Park HH. Protein-Based Nanoparticles as Drug Delivery Systems. Pharmaceutics 2020; 12:E604. [PMID: 32610448 PMCID: PMC7407889 DOI: 10.3390/pharmaceutics12070604] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/26/2020] [Accepted: 06/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nanoparticles have been extensively used as carriers for the delivery of chemicals and biomolecular drugs, such as anticancer drugs and therapeutic proteins. Natural biomolecules, such as proteins, are an attractive alternative to synthetic polymers commonly used in nanoparticle formulation because of their safety. In general, protein nanoparticles offer many advantages, such as biocompatibility and biodegradability. Moreover, the preparation of protein nanoparticles and the corresponding encapsulation process involved mild conditions without the use of toxic chemicals or organic solvents. Protein nanoparticles can be generated using proteins, such as fibroins, albumin, gelatin, gliadine, legumin, 30Kc19, lipoprotein, and ferritin proteins, and are prepared through emulsion, electrospray, and desolvation methods. This review introduces the proteins used and methods used in generating protein nanoparticles and compares the corresponding advantages and disadvantages of each.
Collapse
Affiliation(s)
- Seyoung Hong
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| | - Dong Wook Choi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA;
| | - Hong Nam Kim
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Chun Gwon Park
- Department of Biomedical Engineering, SKKU Institute for Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Korea
| | - Wonhwa Lee
- Aging Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Hee Ho Park
- Department of Biotechnology and Bioengineering, Kangwon National University, Chuncheon 24341, Korea;
| |
Collapse
|
9
|
Lee J, Cha H, Park TH, Park JH. Enhanced osteogenic differentiation of human mesenchymal stem cells by direct delivery of Cbfβ protein. Biotechnol Bioeng 2020; 117:2897-2910. [PMID: 32510167 DOI: 10.1002/bit.27453] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/25/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Core binding factor β (Cbfβ) is a non-DNA binding cofactor of Runx2 that potentiates DNA binding. Previously, it has been reported that Cbfβ plays an essential role in osteogenic differentiation and skeletal development by inhibition adipogenesis. Here, we delivered the recombinant Cbfβ protein into human mesenchymal stem cells (MSCs) and triggered osteogenic lineage commitment. The efficient delivery of Cbfβ was achieved by fusing 30Kc19 protein, which is a cell-penetrating protein derived from the silkworm. After the production of the recombinant Cbfβ-30Kc19 protein in the Escherichia coli expression system, and confirmation of its intracellular delivery, MSCs were treated with the Cbfβ-30Kc19 once or twice up to 300 µg/ml. By investigating the upregulation of osteoblast-specific genes and phenotypical changes, such as calcium mineralization, we demonstrated that Cbfβ-30Kc19 efficiently induced osteogenic differentiation in MSCs. At the same time, Cbfβ-30Kc19 suppressed adipocyte formation and downregulated the expression of adipocyte-specific genes. Our results demonstrate that the intracellularly delivered Cbfβ-30Kc19 enhances osteogenesis in MSCs, whereas it suppresses adipogenesis by altering the transcriptional regulatory network involved in osteoblast-adipocyte lineage commitment. Cbfβ-30Kc19 holds great potential for the treatment of bone-related diseases, such as osteoporosis, by allowing transcriptional regulation in MSCs, and overcoming the limitations of current therapies.
Collapse
Affiliation(s)
- Jaeyoung Lee
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Hyeonjin Cha
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Tai Hyun Park
- School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon-si, Gangwon-do, Republic of Korea
| |
Collapse
|
10
|
Protein-based direct reprogramming of fibroblasts to neuronal cells using 30Kc19 protein and transcription factor Ascl1. Int J Biochem Cell Biol 2020; 121:105717. [DOI: 10.1016/j.biocel.2020.105717] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 01/07/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022]
|
11
|
Efficient Production of Cell-permeable Oct4 Protein Using 30Kc19 Protein Originating from Silkworm. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0204-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
12
|
Park HH, Woo YH, Ryu J, Lee HJ, Park JH, Park TH. Enzyme delivery using protein-stabilizing and cell-penetrating 30Kc19α protein nanoparticles. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.08.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
13
|
Ryu J, Kim H, Park HH, Lee HJ, Park JH, Rhee WJ, Park TH. Protein-stabilizing and cell-penetrating properties of α-helix domain of 30Kc19 protein. Biotechnol J 2016; 11:1443-1451. [PMID: 27440394 PMCID: PMC5132017 DOI: 10.1002/biot.201600040] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 07/06/2016] [Accepted: 07/07/2016] [Indexed: 11/09/2022]
Abstract
The protein-stabilizing and cell-penetrating activities of Bombyx mori 30Kc19 α-helix domain (30Kc19α) are investigated. Recently, 30Kc19 protein has been studied extensively as it has both protein-stabilizing and cell-penetrating properties. However, it is unknown which part of 30Kc19 is responsible for those properties. 30Kc19 protein is composed of two distinct domains, an α-helix N-terminal domain (30Kc19α) and a β-trefoil C-terminal domain (30Kc19β). The authors construct and produce truncated forms of 30Kc19 to demonstrate their biological functions. Interestingly, 30Kc19α was shown to be responsible for both the protein-stabilizing and cell-penetrating properties of 30Kc19 protein. 30Kc19α shows even higher protein delivery activity than did whole 30Kc19 protein and has low cytotoxicity when added to cell culture medium. Therefore, based on its multifunctional properties, 30Kc19α can be developed as a novel candidate for a therapeutic protein carrier into various cells and tissues.
Collapse
Affiliation(s)
- Jina Ryu
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Hyoju Kim
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Hee Ho Park
- The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Hong Jai Lee
- The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon, Republic of Korea
| | - Tai Hyun Park
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea.,The School of Chemical and Biological Engineering, Seoul National University, Seoul, Republic of Korea.,Advanced Institutes of Convergence Technology, Suwon, Republic of Korea
| |
Collapse
|
14
|
Lee HJ, Park HH, Sohn Y, Ryu J, Park JH, Rhee WJ, Park TH. α-Galactosidase delivery using 30Kc19-human serum albumin nanoparticles for effective treatment of Fabry disease. Appl Microbiol Biotechnol 2016; 100:10395-10402. [PMID: 27353764 DOI: 10.1007/s00253-016-7689-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 06/12/2016] [Accepted: 06/14/2016] [Indexed: 12/19/2022]
Abstract
Fabry disease is a genetic lysosomal storage disease caused by deficiency of α-galactosidase, the enzyme-degrading neutral glycosphingolipid that is transported to lysosome. Glycosphingolipid accumulation by this disease causes multi-organ dysfunction and premature death of the patient. Currently, enzyme replacement therapy (ERT) using recombinant α-galactosidase is the only treatment available for Fabry disease. To maximize the efficacy of treatment, enhancement of cellular delivery and enzyme stability is a challenge in ERT using α-galactosidase. In this study, protein nanoparticles using human serum albumin (HSA) and 30Kc19 protein, originating from silkworm, were used to enhance the delivery and intracellular α-galactosidase stability. 30Kc19-HSA nanoparticles loaded with the α-galactosidase were formed by desolvation method. 30Kc19-HSA nanoparticles had a uniform spherical shape and were well dispersed in cell culture media. 30Kc19-HSA nanoparticles had negligible toxicity to human cells. The nanoparticles exhibited enhanced cellular uptake and intracellular stability of delivered α-galactosidase in human foreskin fibroblast. Additionally, they showed enhanced globotriaosylceramide degradation in Fabry patients' fibroblasts. It is expected that 30Kc19-HSA protein nanoparticles could be used as an effective tool for efficient delivery and enhanced stability of drugs.
Collapse
Affiliation(s)
- Hong Jai Lee
- The School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Hee Ho Park
- The School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea
| | - Youngsoo Sohn
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Jina Ryu
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea
| | - Ju Hyun Park
- Department of Medical Biomaterials Engineering, Kangwon National University, Chuncheon, Republic of Korea
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Academy-ro, Yeonsu-gu, Incheon, 406-772, Republic of Korea
| | - Tai Hyun Park
- The School of Chemical and Biological Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, Republic of Korea.
- Interdisciplinary Program for Bioengineering, Seoul National University, Seoul, Republic of Korea.
- Advanced Institutes of Convergence Technology, Suwon, Republic of Korea.
| |
Collapse
|
15
|
Soluble expression and stability enhancement of transcription factors using 30Kc19 cell-penetrating protein. Appl Microbiol Biotechnol 2015; 100:3523-32. [DOI: 10.1007/s00253-015-7199-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/15/2015] [Accepted: 11/23/2015] [Indexed: 12/20/2022]
|
16
|
Park HH, Choi J, Lee HJ, Ryu J, Park JH, Rhee WJ, Park TH. Enhancement of human erythropoietin production in Chinese hamster ovary cells through supplementation of 30Kc19-30Kc6 fusion protein. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|