1
|
Zhao Y, Meng J, Wang Y, Zhao Q, Wang J, Gao W. Research progress of β-xylosidase in green synthesis. Int J Biol Macromol 2025; 306:141404. [PMID: 40010478 DOI: 10.1016/j.ijbiomac.2025.141404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
β-Xylosidase, an important hydrolase, catalyzes the degradation of xylan and xylosides, demonstrating significant potential for applications in biomass conversion and green synthesis. In recent years, with the rise of green chemistry, research on β-xylosidase in sustainable chemical synthesis has garnered increasing attention. Lignocellulosic biomass, a readily available and sustainable natural resource, requires the involvement of β-xylosidase for the production of biofuels. This enzyme not only efficiently degrades the xylan components of plant cell walls to produce biofuels but also synthesizes high-value glycosides through transglycosylation reactions, providing an eco-friendly catalytic tool for green chemical synthesis. This review summarizes the structural characteristics and catalytic mechanisms of β-xylosidase, along with related techniques to enhance its catalytic performance, such as enzyme immobilization, enzyme fusion technology, genetic engineering, and enzyme synergy. It focuses on recent advancements in its green applications, including the production of active compounds, waste degradation, bioenergy development, pulp bleaching, and deinking of waste paper (as shown in Fig. 1). Additionally, in light of current research trends, this review offers insights into the future prospects and challenges of β-xylosidase in green synthesis, aiming to provide valuable references for related fields.
Collapse
Affiliation(s)
- Yue Zhao
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jie Meng
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Yike Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Qi Zhao
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Juan Wang
- School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| | - Wenyuan Gao
- Traditional Chinese Medicine College, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; School of Pharmaceutical Science and Technology, Faculty of Medicine, Tianjin University, Tianjin 300072, China; State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin 300072, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China.
| |
Collapse
|
2
|
Melo VSD, Gomes BM, Chambergo FS. Biochemical characterization of a xylose-tolerant GH43 β-xylosidase from Geobacillus thermodenitrificans. Carbohydr Res 2023; 532:108901. [PMID: 37487384 DOI: 10.1016/j.carres.2023.108901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 07/12/2023] [Accepted: 07/15/2023] [Indexed: 07/26/2023]
Abstract
Hemicelluloses are the second most abundant polysaccharide in plant biomass, in which xylan is the main constituent. Aiming at the total degradation of xylan and the obtention of fermentable sugars, several enzymes acting synergistically are required, especially β-xylosidases. In this study, β-xylosidase from Geobacillus thermodenitrificans (GtXyl) was expressed in E. coli BL21 and characterized. The enzyme GtXyl has been grouped within the family of glycoside hydrolases 43 (GH43). Results showed that GtXyl obtained the highest activity at pH 5.0 and temperature of 60 °C. In the additive's tests, the enzyme remained stable in the presence of metal ions and EDTA, and showed high tolerance to xylose, with a relative activity of 55.4% at 400 mM. The enzyme also presented bifunctional activity of β-xylosidase and α-l-arabinofuranosidase, with the highest activity on the substrate p-nitrophenyl-β-d-xylopyranoside. The specific activity on p-nitrophenyl-β-d-xylopyranoside was 18.33 U mg-1 and catalytic efficiency of 20.21 mM-1 s-1, which is comparable to other β-xylosidases reported in the literature. Putting together, the GtXyl enzyme presented interesting biochemical characteristics that are desirable for the application in the enzymatic hydrolysis of plant biomass, such as activity at higher temperatures, high thermostability and stability to metal ions.
Collapse
Affiliation(s)
- Vandierly Sampaio de Melo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil
| | - Brisa Moreira Gomes
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil
| | - Felipe Santiago Chambergo
- Laboratory of Biochemistry and Protein Biotechnology, School of Arts, Sciences and Humanities, University of São Paulo, Av. Arlindo Bettio, 1000, São Paulo, CEP: 03828000, Brazil.
| |
Collapse
|
3
|
Alicyclobacillus mali FL18 as a Novel Source of Glycosyl Hydrolases: Characterization of a New Thermophilic β-Xylosidase Tolerant to Monosaccharides. Int J Mol Sci 2022; 23:ijms232214310. [PMID: 36430787 PMCID: PMC9696088 DOI: 10.3390/ijms232214310] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/04/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022] Open
Abstract
A thermo-acidophilic bacterium, Alicyclobacillus mali FL18, was isolated from a hot spring of Pisciarelli, near Naples, Italy; following genome analysis, a novel putative β-xylosidase, AmβXyl, belonging to the glycosyl hydrolase (GH) family 3 was identified. A synthetic gene was produced, cloned in pET-30a(+), and expressed in Escherichia coli BL21 (DE3) RIL. The purified recombinant protein, which showed a dimeric structure, had optimal catalytic activity at 80 °C and pH 5.6, exhibiting 60% of its activity after 2 h at 50 °C and displaying high stability (more than 80%) at pH 5.0-8.0 after 16 h. AmβXyl is mainly active on both para-nitrophenyl-β-D-xylopyranoside (KM 0.52 mM, kcat 1606 s-1, and kcat/KM 3088.46 mM-1·s-1) and para-nitrophenyl-α-L-arabinofuranoside (KM 10.56 mM, kcat 2395.8 s-1, and kcat/KM 226.87 mM-1·s-1). Thin-layer chromatography showed its ability to convert xylooligomers (xylobiose and xylotriose) into xylose, confirming that AmβXyl is a true β-xylosidase. Furthermore, no inhibitory effect on enzymatic activity by metal ions, detergents, or EDTA was observed except for 5 mM Cu2+. AmβXyl showed an excellent tolerance to organic solvents; in particular, the enzyme increased its activity at high concentrations (30%) of organic solvents such as ethanol, methanol, and DMSO. Lastly, the enzyme showed not only a good tolerance to inhibition by xylose, arabinose, and glucose, but was activated by 0.75 M xylose and up to 1.5 M by both arabinose and glucose. The high tolerance to organic solvents and monosaccharides together with other characteristics reported above suggests that AmβXyl may have several applications in many industrial fields.
Collapse
|
4
|
High-level expression of a novel multifunctional GH3 family β-xylosidase/α-arabinosidase/β-glucosidase from Dictyoglomus turgidum in Escherichia coli. Bioorg Chem 2021; 111:104906. [PMID: 33894434 DOI: 10.1016/j.bioorg.2021.104906] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/24/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022]
Abstract
A novel β-xylosidase Dt-2286 from Dictyoglomus turgidum was cloned and overexpressed in Escherichia coli BL21 (DE3). Dt-2286 belonging to glycoside hydrolase (GH) family 3 encodes a polypeptide with 762 amino acid residues with a molecular weight of 85.1 kDa. By optimization of the growth and induction conditions, the activity of β-xylosidase reached 273 U/mL, which is the highest yield reported to date from E. coli in a shake-flask. The optimal activities of the purified Dt-2286 were found at pH 5.0 and 98 °C. It also shows excellent thermostable/haloduric/organic solvent-tolerance. Dt-2286 was revealed to be a multifunctional enzyme with β-xylosidase, α-arabinofuranoside, α-arabinopyranoside and β-glucosidase activities, and Kcat/Km was 5245.316 mM-1 s-1, 2077.353 mM-1 s-1, 1626.454 mM-1 s-1, and 470.432 mM-1 s-1 respectively. Dt-2286 showed significant synergistic effects on the degradation of xylans, releasing more reduced sugars (up to 15.08 fold) by simultaneous addition with endoxylanase. Moreover, this enzyme has good activity in the hydrolysis of epimedium B, demonstrating its versatility in practical applications.
Collapse
|
5
|
Souto BDM, de Araújo ACB, Hamann PRV, Bastos ADR, Cunha IDS, Peixoto J, Kruger RH, Noronha EF, Quirino BF. Functional screening of a Caatinga goat (Capra hircus) rumen metagenomic library reveals a novel GH3 β-xylosidase. PLoS One 2021; 16:e0245118. [PMID: 33449963 PMCID: PMC7810302 DOI: 10.1371/journal.pone.0245118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 12/23/2020] [Indexed: 11/18/2022] Open
Abstract
Functional screening of metagenomic libraries is an effective approach for identification of novel enzymes. A Caatinga biome goat rumen metagenomic library was screened using esculin as a substrate, and a gene from an unknown bacterium encoding a novel GH3 enzyme, BGL11, was identified. None of the BGL11 closely related genes have been previously characterized. Recombinant BGL11 was obtained and kinetically characterized. Substrate specificity of the purified protein was assessed using seven synthetic aryl substrates. Activity towards nitrophenyl-β-D-glucopyranoside (pNPG), 4-nitrophenyl-β-D-xylopyranoside (pNPX) and 4-nitrophenyl-β-D-cellobioside (pNPC) suggested that BGL11 is a multifunctional enzyme with β-glucosidase, β-xylosidase, and cellobiohydrolase activities. However, further testing with five natural substrates revealed that, although BGL11 has multiple substrate specificity, it is most active towards xylobiose. Thus, in its native goat rumen environment, BGL11 most likely functions as an extracellular β-xylosidase acting on hemicellulose. Biochemical characterization of BGL11 showed an optimal pH of 5.6, and an optimal temperature of 50°C. Enzyme stability, an important parameter for industrial application, was also investigated. At 40°C purified BGL11 remained active for more than 15 hours without reduction in activity, and at 50°C, after 7 hours of incubation, BGL11 remained 60% active. The enzyme kinetic parameters of Km and Vmax using xylobiose were determined to be 3.88 mM and 38.53 μmol.min-1.mg-1, respectively, and the Kcat was 57.79 s-1. In contrast to BLG11, most β-xylosidases kinetically studied belong to the GH43 family and have been characterized only using synthetic substrates. In industry, β-xylosidases can be used for plant biomass deconstruction, and the released sugars can be fermented into valuable bio-products, ranging from the biofuel ethanol to the sugar substitute xylitol.
Collapse
Affiliation(s)
| | | | | | | | - Isabel de Souza Cunha
- Genomic Sciences and Biotechnology Program, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Julianna Peixoto
- Department of Cellular Biology, Laboratory of Enzymology, Universidade de Brasília, Brasília, DF, Brazil
| | - Ricardo Henrique Kruger
- Department of Cellular Biology, Laboratory of Enzymology, Universidade de Brasília, Brasília, DF, Brazil
| | - Eliane Ferreira Noronha
- Department of Cellular Biology, Laboratory of Enzymology, Universidade de Brasília, Brasília, DF, Brazil
| | | |
Collapse
|
6
|
Tomazini A, Higasi P, Manzine LR, Stott M, Sparling R, Levin DB, Polikarpov I. A novel thermostable GH5 β-xylosidase from Thermogemmatispora sp. T81. N Biotechnol 2019; 53:57-64. [DOI: 10.1016/j.nbt.2019.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/09/2019] [Accepted: 07/06/2019] [Indexed: 10/26/2022]
|
7
|
Liu Y, Huang L, Zheng D, Xu Z, Li Y, Shao S, Zhang Y, Ge X, Lu F. Biochemical characterization of a novel GH43 family β-xylosidase from Bacillus pumilus. Food Chem 2019; 295:653-661. [DOI: 10.1016/j.foodchem.2019.05.163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 05/15/2019] [Accepted: 05/23/2019] [Indexed: 10/26/2022]
|
8
|
A novel β-xylosidase from Anoxybacillus sp. 3M towards an improved agro-industrial residues saccharification. Int J Biol Macromol 2019; 122:1224-1234. [DOI: 10.1016/j.ijbiomac.2018.09.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 11/20/2022]
|
9
|
Boyce A, Walsh G. Purification and Characterisation of a Thermostable β-Xylosidase from Aspergillus niger van Tieghem of Potential Application in Lignocellulosic Bioethanol Production. Appl Biochem Biotechnol 2018; 186:712-730. [DOI: 10.1007/s12010-018-2761-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/11/2018] [Indexed: 12/30/2022]
|
10
|
Zhang J, Cui T, Li X. Screening and identification of an Enterobacter ludwigii strain expressing an active β-xylosidase. ANN MICROBIOL 2018. [DOI: 10.1007/s13213-018-1334-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
Li T, Wu YR, He J. Heterologous expression, characterization and application of a new β-xylosidase identified in solventogenic Clostridium sp. strain BOH3. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.02.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
12
|
Cintra LC, Fernandes AG, Oliveira ICMD, Siqueira SJL, Costa IGO, Colussi F, Jesuíno RSA, Ulhoa CJ, Faria FPD. Characterization of a recombinant xylose tolerant β-xylosidase from Humicola grisea var. thermoidea and its use in sugarcane bagasse hydrolysis. Int J Biol Macromol 2017; 105:262-271. [DOI: 10.1016/j.ijbiomac.2017.07.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 04/07/2017] [Accepted: 07/06/2017] [Indexed: 11/30/2022]
|
13
|
Malgas S, Thoresen M, van Dyk JS, Pletschke BI. Time dependence of enzyme synergism during the degradation of model and natural lignocellulosic substrates. Enzyme Microb Technol 2017; 103:1-11. [DOI: 10.1016/j.enzmictec.2017.04.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 10/19/2022]
|
14
|
Kumar S, Arumugam N, Permaul K, Singh S. Chapter 5 Thermostable Enzymes and Their Industrial Applications. Microb Biotechnol 2016. [DOI: 10.1201/9781315367880-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2023] Open
|
15
|
Zhang L, Ma Y, Zhao C, He B, Zhu X, Yang W. Entrapment of Xylanase within a Polyethylene Glycol Net-Cloth Grafted on Polypropylene Nonwoven Fabrics with Exceptional Operational Stability and Its Application for Hydrolysis of Corncob Hemicelluloses. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00254] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lihua Zhang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yuhong Ma
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, China
| | - Changwen Zhao
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin He
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xing Zhu
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wantai Yang
- State
Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Beijing
Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
16
|
Yang W, Bai Y, Yang P, Luo H, Huang H, Meng K, Shi P, Wang Y, Yao B. A novel bifunctional GH51 exo-α-l-arabinofuranosidase/endo-xylanase from Alicyclobacillus sp. A4 with significant biomass-degrading capacity. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:197. [PMID: 26628911 PMCID: PMC4666033 DOI: 10.1186/s13068-015-0366-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 10/27/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Improving the hydrolytic performance of xylanolytic enzymes on arabinoxylan is of importance in the ethanol fermentation industry. Supplementation of debranching (arabinofuranosidase) and depolymerizing (xylanase) enzymes is a way to address the problem. In the present study, we identified a bifunctional α-l-arabinofuranosidase/endo-xylanase (Ac-Abf51A) of glycoside hydrolase family 51 in Alicyclobacillus sp. strain A4. Its biochemical stability and great hydrolysis efficiency against complex biomass make it a potential candidate for the production of biofuels. RESULTS The gene encoding Ac-Abf51A was cloned. The comparison of its sequence with reference proteins having resolved 3D-structures revealed nine key residues involved in catalysis and substrate-binding interaction. Recombinant Ac-Abf51A produced in Escherichia coli showed optimal activity at pH 6.0 and 60 °C with 4-nitrophenyl-α-l-arabinofuranoside as the substrate. The enzyme exhibited an exo-type mode of action on polyarabinosides by catalyzing the cleavage of α-1,2- and α-1,3-linked arabinofuranose side chains in sugar beet arabinan and water-soluble wheat arabinoxylan and α-1,5-linked arabinofuranosidic bonds in debranched sugar beet arabinan. Surprisingly, it had capacity to release xylobiose and xylotriose from wheat arabinoxylan and was active on xylooligosaccharides (xylohexaose 1.2/mM/min, xylopentaose 6.9/mM/min, and xylotetraose 19.7/mM/min), however a lower level of activity. Moreover, Ac-Abf51A showed greater synergistic effect in combination with xylanase (2.92-fold) on wheat arabinoxylan degradation than other reported enzymes, for the amounts of arabinose, xylose, and xylobiose were all increased in comparison to that by the enzymes acting individually. CONCLUSIONS This study for the first time reports a GH51 enzyme with both exo-α-l-arabinofuranosidase and endo-xylanase activities. It was stable over a broad pH range and at high temperature, and showed greater synergistic effect with xylanase on the degradation of wheat arabinoxylan than other counterparts. The distinguished synergy might be ascribed to its bifunctional α-l-arabinofuranosidase/xylanase activity, which may represent a possible way to degrade biomass at lower enzyme loadings.
Collapse
Affiliation(s)
- Wenxia Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yingguo Bai
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Peilong Yang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Huoqing Huang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Kun Meng
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Pengjun Shi
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Yaru Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Beijing, 100081 People’s Republic of China
| |
Collapse
|
17
|
Research Progress Concerning Fungal and Bacterial β-Xylosidases. Appl Biochem Biotechnol 2015; 178:766-95. [DOI: 10.1007/s12010-015-1908-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 10/22/2015] [Indexed: 01/08/2023]
|