1
|
Liu S, Gao PF, Li S, Fu H, Wang L, Dai Y, Fu M. A review of the recent progress in biotrickling filters: packing materials, gases, micro-organisms, and CFD. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:125398-125416. [PMID: 38012483 DOI: 10.1007/s11356-023-31004-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023]
Abstract
Organic pollutants in the air have serious consequences on both human health and the environment. Among the various methods for removing organic pollution gas, biotrickling filters (BTFs) are becoming more and more popular due to their cost-effective advantages. BTF can effectively degrade organic pollutants without producing secondary pollutants. In the current research on the removal of organic pollutants by BTF, improving the performance of BTF has always been a research hotspot. Researchers have conducted studies from different aspects to improve the removal performance of BTF for organic pollutants. Including research on the performance of BTF using different packing materials, research on the removal of various mixed pollutant gases by BTF, research on microbial communities in BTF, and other studies that can improve the performance of BTF. Moreover, computational fluid dynamics (CFD) was introduced to study the microscopic process of BTF removal of organic pollutants. CFD is a simulation tool widely used in aerospace, automotive, and industrial production. In the study of BTF removal of organic pollutants, CFD can simulate the fluid movement, mass transfer process, and biodegradation process in BTF in a visual way. This review will summarize the development of BTFs from four aspects: packing materials, mixed gases, micro-organisms, and CFD, in order to provide a reference and direction for the future optimization of BTFs.
Collapse
Affiliation(s)
- Shuaihao Liu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Pan-Feng Gao
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China.
| | - Shubiao Li
- Xiamen Lian Chuang Dar Technology Co., Ltd., Xiamen, 361000, China
| | - Haiyan Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Liyong Wang
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Yuan Dai
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| | - Muxing Fu
- College of Environmental Science & Engineering, Xiamen University of Technology, Xiamen, 361024, China
| |
Collapse
|
2
|
The Comparison of Biotreatment and Chemical Treatment for Odor Control during Kitchen Waste Aerobic Composting. SEPARATIONS 2022. [DOI: 10.3390/separations9110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Odor ΨΩγemission has become mathvariant="normal" mathvariant="sans-serif-bold-italic" an important issue in kitchen waste management. Ammonia and hydrogen sulfide are the two most important odor sources as they contribute malodor and can cause health problems. As biotreatment and chemical treatment are two majorly applied technologies for odor control, in this study, they were used to remove ammonia and hydrogen sulfide and the performance of each process was compared. It was found that chemical absorption could efficiently eliminate both ammonia and hydrogenmathvariant="script" sulfide, and the removal efficiencies of ammonia and hydrogen sulfide highly depended on the pH of the adsorbent, contacting time, and gas and solution ratio (G/S). The ammonia-removal efficiency reached 100% within less than 2 s at G/S 600 and pH 0.1. The complete removal of hydrogen sulfide was achieved within 2 s at G/S 4000 and pH 13. Biotrickling filter showed better ability for hydrogen sulfide removal and the removal efficiency was 91.9%; however, the ammonia removal was only 73.5%. It suggests that chemical adsorption is more efficient compared to biotreatment for removing ammonia and hydrogen sulfide. In the combination of the two processes, biotrickling filter followed by chemical adsorption, the final concentrations of ammonia and hydrogen sulfide could meet the Level 1 standard of Emission Standards for Odor Pollution (China). The study provides a potential approach for odor control during kitchen waste aerobic composting.
Collapse
|
3
|
Huan C, Lyu Q, Tong X, Li H, Zeng Y, Liu Y, Jiang X, Ji G, Xu L, Yan Z. Analyses of deodorization performance of mixotrophic biotrickling filter reactor using different industrial and agricultural wastes as packing material. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126608. [PMID: 34280718 DOI: 10.1016/j.jhazmat.2021.126608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/19/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, to efficiently remove malodorous gas and reduce secondary pollution under mixotrophic conditions, pine bark, coal cinder, straw and mobile bed biofilm reactor (MBBR) fillers were used as packing materials in a biological trickling filter (BTF) to simultaneously treat high-concentration H2S and NH3. The results showed that the removal rate of BTF-A filled with pine bark was the highest, which was 86.31% and 94.06% under the H2S and NH3 loading rates of 53.59 g/m³·h while the empty bed residence time (EBRT) was 40.5 s. The theoretical maximum load was obtained by fitting the kinetic curve, and the value were 90.09 g H2S m-³·h-1 and 172.41 g NH3 m-³·h-1. Meanwhile, after treating with 720 ppm of NH3, the average concentration of NO3- in the BTF circulating fluid was only 127.58 mg/L, indicating the better performance of secondary pollutants control. Microbiological analysis showed that Dokdonella, Micropruina, Candidatus_Alysiosphaera, Nakamurella and Thiobacillus possessed high abundance at the genus level, and their entire percentage in four BTF reactors were 62.87%, 46.32%, 47.98%, and 57.35% respectively. It is worthwhile that the genera Comamonas and Trichococcus with heterotrophic nitrification and aerobic denitrification capabilities and proportion of 3.66%, 1.45%, 5.43%, and 3.23% were observed in four reactors.
Collapse
Affiliation(s)
- Chenchen Huan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinyu Tong
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Shaanxi 710048, China
| | - Haihong Li
- College of Environmental and Chemical Engineering, Xi'an Polytechnic University, Shaanxi 710048, China
| | - Yong Zeng
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yang Liu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Xinru Jiang
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Gaosheng Ji
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Lishan Xu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| |
Collapse
|
4
|
Morral E, Gabriel D, Dorado AD, Gamisans X. A review of biotechnologies for the abatement of ammonia emissions. CHEMOSPHERE 2021; 273:128606. [PMID: 33139050 DOI: 10.1016/j.chemosphere.2020.128606] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 04/20/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
Ammonia emissions are found in a wide range of facilities such as wastewater treatment plants, composting plants, pig houses, as well as the fertilizer, food and metallurgy industries. Effective management of these emissions is important for minimizing the detrimental effects they can have on health and the environment. Physical-chemical (thermal oxidation, absorption, catalytic oxidation, etc.) treatments are the most common techniques for the abatement of ammonia emissions. However, the requirement for more eco-friendly techniques has increased interest in biological alternatives. Accordingly, several bio-based process configurations (biofilters, biotrickling filters and bioscrubbers) have been reported for ammonia abatement in a wide spectrum of conditions. Due to ammonia is a highly soluble compound, bioscrubber seems to be the best option for ammonia abatement. However, this technology is still not widely studied. The proper managements of the ammonia bio-oxidation sub-products is a key parameter for the correct operation of the process. The aim of this review is to critically examine the biotechnologies currently used for the treatment of ammonia gas emissions highlighting the pros and cons of each technology. The key parameters for each configuration used in both full-scale and lab-scale bioreactors are analyzed and summarized according to previous publications.
Collapse
Affiliation(s)
- Eloi Morral
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Bases de Manresa, 61-73, 08240, Manresa, Spain.
| | - David Gabriel
- Department of Chemical, Biological and Environmental Engineering, Universitat Autònoma de Barcelona, Edifici Q, 08193, Bellaterra, Spain
| | - Antonio D Dorado
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Bases de Manresa, 61-73, 08240, Manresa, Spain
| | - Xavier Gamisans
- Department of Mining, Industrial and ICT Engineering, Universitat Politècnica de Catalunya, Bases de Manresa, 61-73, 08240, Manresa, Spain
| |
Collapse
|
5
|
Xie L, Zhu J, Hu J, Jiang C. Study of the Mass Transfer–Biodegradation Kinetics in a Pilot-Scale Biotrickling Filter for the Removal of H 2S. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c00672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Le Xie
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Jundong Zhu
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Jiang Hu
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| | - Chongwen Jiang
- College of Chemistry and Chemical Engineering, and Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha 410083, Hunan, China
| |
Collapse
|
6
|
Ghasemi R, Golbabaei F, Rezaei S, Pourmand MR, Nabizadeh R, Jafari MJ, masoorian E. A comparison of biofiltration performance based on bacteria and fungi for treating toluene vapors from airflow. AMB Express 2020; 10:8. [PMID: 31938898 PMCID: PMC6960271 DOI: 10.1186/s13568-019-0941-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 12/26/2019] [Indexed: 12/04/2022] Open
Abstract
With increasing concerns about industrial gas contaminants and the growing demand for durable and sustainable technologies, attentions have been gradually shifted to biological air pollution controls. The ability of Pseudomonas putida PTCC 1694 (bacteria) and Pleurotus ostreatus IRAN 1781C (fungus) to treat contaminated gas stream with toluene and its biological degradation was compared under similar operating conditions. For this purpose, a biofilter on the laboratory scale was designed and constructed and the tests were carried out in two stages. The first stage, bacterial testing, lasted 20 days and the second stage, fungal testing, lasted 16 days. Inlet loading rates (IL) for bacterial and fungal biofilters were 21.62 ± 6.04 and 26.24 ± 7.35 g/m3 h respectively. In general, fungal biofilter showed a higher elimination capacity (EC) than bacterial biofilter (18.1 ± 6.98 vs 13.7 ± 4.7 g/m3 h). However, the pressure drop in the fungal biofilter was higher than the bacterial biofilter (1.26 ± 0.3 vs 1 ± 0.3 mm water), which was probably due to the growth of the mycelium. Fungal biofiltration showed a better performance in the removal of toluene from the air stream.
Collapse
|
7
|
Wysocka I, Gębicki J, Namieśnik J. Technologies for deodorization of malodorous gases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9409-9434. [PMID: 30715695 PMCID: PMC6469639 DOI: 10.1007/s11356-019-04195-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 01/08/2019] [Indexed: 06/09/2023]
Abstract
There is an increasing number of citizens' complaints about odor nuisance due to production or service activity. High social awareness imposes pressure on entrepreneurs and service providers forcing them to undertake effective steps aimed at minimization of the effects of their activity, also with respect to emission of malodorous substances. The article presents information about various technologies used for gas deodorization. Known solutions can be included into two groups: technologies offering prevention of emissions, and methodological solutions that enable removal of malodorous substances from the stream of emitted gases. It is obvious that the selection of deodorization technologies is conditioned by many factors, and it should be preceded by an in-depth analysis of possibilities and limitations offered by various solutions. The aim of the article is presentation of the available gas deodorization technologies as to facilitate the potential investors with selection of the method of malodorous gases emission limitation, suitable for particular conditions.
Collapse
Affiliation(s)
- Izabela Wysocka
- Faculty of Environmental Sciences, Department of Environmental Engineering, University of Warmia and Mazury in Olsztyn, 117 Warszawska St., 10-701 Olsztyn, Poland
| | - Jacek Gębicki
- Faculty of Chemistry, Department of Process Engineering and Chemical Technology, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland
| | - Jacek Namieśnik
- Faculty of Chemistry, Department of Analytical Chemistry, Gdańsk University of Technology, 11/12 G. Narutowicza Str., 80-233 Gdańsk, Poland
| |
Collapse
|
8
|
Rybarczyk P, Szulczyński B, Gębicki J, Hupka J. Treatment of malodorous air in biotrickling filters: A review. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2018.10.014] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|