1
|
Ma J, Liu P, Cai S, Wu T, Chen D, Zhu C, Li S. Discovery and Identification of a Novel Tag of HlyA60 for Protein Active Aggregate Formation in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:493-503. [PMID: 38109329 DOI: 10.1021/acs.jafc.3c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
The strategy of active aggregation tag fusion expression with target proteins can solve the problems of restricted expression, inefficient purification, and laborious immobilization faced in the production of recombinant proteins in Escherichia coli. We localized a novel active aggregation peptide HlyA60 from the hemolysin A secretion system, which can effectively induce aggregate formation with satisfactory protein activities in E. coli after fusion expression with the protein of interest. Based on structural prediction and surface properties, the process of active aggregation of HlyA60 through electrostatic interactions and hydrophobic interactions was analyzed. To investigate the potential application of HlyA60 as an efficient aggregation tag, it was fused with acetyl xylan esterase and lipase A, separately. The resulting fusion proteins demonstrated active aggregation rates of 97.6 and 66.7%, respectively, leading to 1.9-fold and 1.7-fold increases in bacterial density at the end of fermentation. The AXE-HlyA60 fusion protein, which exhibited superior performance, was subjected to purification and immobilization. It was able to achieve column-free purification with an impressive 98.8% recovery and in situ immobilization; the immobilization enabled 30 cycles of reactions to take place with 85% residual activity maintained. Our findings provide a novel tool for efficiently producing recombinant proteins in E. coli.
Collapse
Affiliation(s)
- Jiayuan Ma
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Peiling Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shengliang Cai
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Tao Wu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Dongying Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Chaoyi Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuang Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
2
|
Le TD, Suttikhana I, Ashaolu TJ. State of the art on the separation and purification of proteins by magnetic nanoparticles. J Nanobiotechnology 2023; 21:363. [PMID: 37794459 PMCID: PMC10548632 DOI: 10.1186/s12951-023-02123-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/21/2023] [Indexed: 10/06/2023] Open
Abstract
The need for excellent, affordable, rapid, reusable and biocompatible protein purification techniques is justified based on the roles of proteins as key biomacromolecules. Magnetic nanomaterials nowadays have become the subject of discussion in proteomics, drug delivery, and gene sensing due to their various abilities including rapid separation, superparamagnetism, and biocompatibility. These nanomaterials also referred to as magnetic nanoparticles (MNPs) serve as excellent options for traditional protein separation and analytical methods because they have a larger surface area per volume. From ionic metals to carbon-based materials, MNPs are easily functionalized by modifying their surface to precisely recognize and bind proteins. This review excavates state-of-the-art MNPs and their functionalizing agents, as efficient protein separation and purification techniques, including ionic metals, polymers, biomolecules, antibodies, and graphene. The MNPs could be reused and efficaciously manipulated with these nanomaterials leading to highly improved efficiency, adsorption, desorption, and purity rate. We also discuss the binding and selectivity parameters of the MNPs, as well as their future outlook. It is concluded that parameters like charge, size, core-shell, lipophilicity, lipophobicity, and surface energy of the MNPs are crucial when considering protein selectivity, chelation, separation, and purity.
Collapse
Affiliation(s)
- Thanh-Do Le
- Institute for Global Health Innovations, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam
| | - Itthanan Suttikhana
- Department of Multifunctional Agriculture, Faculty of Agriculture and Technology, University of South Bohemia, České Budějovice, Czech Republic
| | - Tolulope Joshua Ashaolu
- Institute for Global Health Innovations, Faculty of Medicine, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
3
|
Adetunji AI, Olaniran AO. Biocatalytic Profiling of Free and Immobilized Partially Purified Alkaline Protease from an Autochthonous Bacillus aryabhattai Ab15-ES. REACTIONS 2023. [DOI: 10.3390/reactions4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Partially purified alkaline protease produced by an indigenous bacterial strain, Bacillus aryabhattai Ab15-ES, was insolubilized in alginate beads using an entrapment technique. Maximum entrapped enzyme activities of 68.76% and 71.06% were recorded at optimum conditions of 2% (w/v) sodium alginate and 0.3 M calcium chloride. Biochemical profiling of free and immobilized proteases was investigated by determining their activity and stability as well as kinetic properties. Both enzyme preparations exhibited maximum activity at the optimum pH and temperature of 8.0 and 50 °C, respectively. However, in comparison to the free enzyme, the immobilized protease showed improved pH stability at 8.0–9.0 and thermal stability at 40–50 °C. In addition, the entrapped protease exhibited a higher Vmax and increased affinity to the substrate (1.65-fold) than the soluble enzyme. The immobilized protease was found to be more stable than the free enzyme, retaining 80.88% and 38.37% of its initial activity when stored at 4 °C and 25 °C, respectively, for 30 d. After repeated use seven times, the protease entrapped in alginate beads maintained 32.93% of its original activity. These findings suggest the efficacy and sustainability of the developed immobilized catalytic system for various biotechnological applications.
Collapse
Affiliation(s)
- Adegoke Isiaka Adetunji
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
- Department of Biological Sciences, Summit University, Offa 250101, Nigeria
- Centre for Mineral Biogeochemistry, University of the Free State, Bloemfontein 9031, South Africa
| | - Ademola Olufolahan Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
4
|
Peroxyacetic Acid Pretreatment: A Potentially Promising Strategy towards Lignocellulose Biorefinery. Molecules 2022; 27:molecules27196359. [PMID: 36234896 PMCID: PMC9573572 DOI: 10.3390/molecules27196359] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The stubborn and complex structure of lignocellulose hinders the valorization of each component of cellulose, hemicellulose, and lignin in the biorefinery industries. Therefore, efficient pretreatment is an essential and prerequisite step for lignocellulose biorefinery. Recently, a considerable number of studies have focused on peroxyacetic acid (PAA) pretreatment in lignocellulose fractionation and some breakthroughs have been achieved in recent decades. In this article, we aim to highlight the challenges of PAA pretreatment and propose a roadmap towards lignocellulose fractionation by PAA for future research. As a novel promising pretreatment method towards lignocellulosic fractionation, PAA is a strong oxidizing agent that can selectively remove lignin and hemicellulose from lignocellulose, retaining intact cellulose for downstream upgrading. PAA in lignocellulose pretreatment can be divided into commercial PAA, chemical activation PAA, and enzymatic in-situ generation of PAA. Each PAA for lignocellulose fractionation shows its own advantages and disadvantages. To meet the theme of green chemistry, enzymatic in-situ generation of PAA has aroused a great deal of enthusiasm in lignocellulose fractionation. Furthermore, mass balance and techno-economic analyses are discussed in order to evaluate the feasibility of PAA pretreatment in lignocellulose fractionation. Ultimately, some perspectives and opportunities are proposed to address the existing limitations in PAA pretreatment towards biomass biorefinery valorization. In summary, from the views of green chemistry, enzymatic in-situ generation of PAA will become a cutting-edge topic research in the lignocellulose fractionation in future.
Collapse
|
5
|
A novel enhanced dot blot immunoassay using colorimetric biosensor for detection of Toxoplasma gondii infection. Comp Immunol Microbiol Infect Dis 2021; 79:101708. [PMID: 34481108 DOI: 10.1016/j.cimid.2021.101708] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 12/22/2022]
Abstract
This study reports development of a novel point of care assay, namely an enhanced immuno-dot blot assay, for discrimination of anti-Toxoplasma IgG and anti-Toxoplasma IgM antibodies. This method has been designed based on formation of a sandwich complex between a gold nanoprobe (chitosan gold nanoparticle-anti-human IgG or anti-IgM) and anti- Toxoplasma lysate antigen (TLA) which holds anti-TLA antibodies, either IgG or IgM. Briefly, anti-human IgG or anti-IgM antibody was conjugated to chitosan gold nanoparticles via glutaraldehyde chemistry. Then, lysate antigen was immobilized on the surface of nitrocellulose membrane, which followed by addition of the sera sample and gold nanoprobes. The positive signals were readily detectable via observation with naked eye. This positive color change was further intensified via gold enhancement chemistry. The intensity of biosensor signal was proportional to the concentration of active antibodies on the surface of nanoparticles, titer of T. gondii antibodies in the sera samples and concentration of Toxoplasma lysate antigen coated on the nitrocellulose membrane. A minimum concentration to use the antibodies for conjugation, to detect titer of Toxoplasma IgG and IgM antibodies, and the concentration of TLA coated in nitrocellulose membrane were 0.5 mg/mL, 2 IU/mL, 10 IU/mL, and 20 μg/mL, respectively. This enhanced immuno-dot blot assay offers a simple diagnostic technique without expensive equipment requirement for distinguishing of anti- T. gondii IgM and IgG antibodies in field conditions, pregnant women, and immunocompromised patients.
Collapse
|
6
|
Eivazzadeh-Keihan R, Bahreinizad H, Amiri Z, Aliabadi HAM, Salimi-Bani M, Nakisa A, Davoodi F, Tahmasebi B, Ahmadpour F, Radinekiyan F, Maleki A, Hamblin MR, Mahdavi M, Madanchi H. Functionalized magnetic nanoparticles for the separation and purification of proteins and peptides. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116291] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Sharifi M, Sohrabi MJ, Hosseinali SH, Hasan A, Kani PH, Talaei AJ, Karim AY, Nanakali NMQ, Salihi A, Aziz FM, Yan B, Khan RH, Saboury AA, Falahati M. Enzyme immobilization onto the nanomaterials: Application in enzyme stability and prodrug-activated cancer therapy. Int J Biol Macromol 2020; 143:665-676. [DOI: 10.1016/j.ijbiomac.2019.12.064] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 12/05/2019] [Accepted: 12/08/2019] [Indexed: 01/04/2023]
|
8
|
Immobilization of β-galactosidase on chitosan-coated magnetic nanoparticles and its application for synthesis of lactulose-based galactooligosaccharides. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.05.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Doraiswamy N, Sarathi M, Pennathur G. Cross-linked esterase aggregates (CLEAs) using nanoparticles as immobilization matrix. Prep Biochem Biotechnol 2019; 49:270-278. [DOI: 10.1080/10826068.2018.1536993] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
10
|
Chen M, Zeng G, Xu P, Lai C, Tang L. How Do Enzymes ‘Meet’ Nanoparticles and Nanomaterials? Trends Biochem Sci 2017; 42:914-930. [DOI: 10.1016/j.tibs.2017.08.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/24/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
|
11
|
Chitosan and carboxymethyl cellulose based magnetic nanocomposites for application of peroxidase purification. Int J Biol Macromol 2017; 96:149-160. [DOI: 10.1016/j.ijbiomac.2016.12.042] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 11/10/2016] [Accepted: 12/04/2016] [Indexed: 11/22/2022]
|
12
|
He L, Mao Y, Zhang L, Wang H, Alias SA, Gao B, Wei D. Functional expression of a novel α-amylase from Antarctic psychrotolerant fungus for baking industry and its magnetic immobilization. BMC Biotechnol 2017; 17:22. [PMID: 28245836 PMCID: PMC5331696 DOI: 10.1186/s12896-017-0343-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Accepted: 02/23/2017] [Indexed: 12/05/2022] Open
Abstract
Background α-Amylase plays a pivotal role in a broad range of industrial processes. To meet increasing demands of biocatalytic tasks, considerable efforts have been made to isolate enzymes produced by extremophiles. However, the relevant data of α-amylases from cold-adapted fungi are still insufficient. In addition, bread quality presents a particular interest due to its high consummation. Thus developing amylases to improve textural properties could combine health benefits with good sensory properties. Furthermore, iron oxide nanoparticles provide an economical and convenient method for separation of biomacromolecules. In order to maximize the catalytic efficiency of α-amylase and support further applications, a comprehensive characterization of magnetic immobilization of α-amylase is crucial and needed. Results A novel α-amylase (AmyA1) containing an open reading frame of 1482 bp was cloned from Antarctic psychrotolerant fungus G. pannorum and then expressed in the newly constructed Aspergillus oryzae system. The purified recombinant AmyA1 was approximate 52 kDa. AmyA1 was optimally active at pH 5.0 and 40 °C, and retained over 20% of maximal activity at 0–20 °C. The Km and Vmax values toward soluble starch were 2.51 mg/mL and 8.24 × 10−2 mg/(mL min) respectively, with specific activity of 12.8 × 103 U/mg. AmyA1 presented broad substrate specificity, and the main hydrolysis products were glucose, maltose, and maltotetraose. The influence of AmyA1 on the quality of bread was further investigated. The application study shows a 26% increase in specific volume, 14.5% increase in cohesiveness and 14.1% decrease in gumminess in comparison with the control. AmyA1 was immobilized on magnetic nanoparticles and characterized. The immobilized enzyme showed improved thermostability and enhanced pH tolerance under neutral conditions. Also, magnetically immobilized AmyA1 can be easily recovered and reused for maximum utilization. Conclusions A novel α-amylase (AmyA1) from Antarctic psychrotolerant fungus was cloned, heterologous expression in Aspergillus oryzae, and characterized. The detailed report of the enzymatic properties of AmyA1 gives new insights into fungal cold-adapted amylase. Application study showed potential value of AmyA1 in the food and starch fields. In addition, AmyA1 was immobilized on magnetic nanoparticles and characterized. The improved stability and longer service life of AmyA1 could potentially benefit industrial applications. Electronic supplementary material The online version of this article (doi:10.1186/s12896-017-0343-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei He
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Youzhi Mao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Lujia Zhang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Hualei Wang
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| | - Siti Aisyah Alias
- Institute of Ocean and Earth Sciences, C308 Institute of Postgraduate Studies, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Bei Gao
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China.
| | - Dongzhi Wei
- State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, P.O.B.311, 130 Meilong Road, Shanghai, 200237, China
| |
Collapse
|
13
|
Wang L, Chen G, Zhao J, Cai N. Catalase immobilization on amino-activated Fe3O4@SiO2 nanoparticles: Loading density affected activity recovery of catalase. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2017.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
Jain M, A. MS, P. R, S. K, C. M, K. T. Synthesis, characterization and kinetic analysis of chitosan coated magnetic nanobiocatalyst and its application on glucose oleate ester synthesis. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.02.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
15
|
Wu C, Xu C, Ni H, Yang Q, Cai H, Xiao A. Preparation and characterization of tannase immobilized onto carboxyl-functionalized superparamagnetic ferroferric oxide nanoparticles. BIORESOURCE TECHNOLOGY 2016; 205:67-74. [PMID: 26809129 DOI: 10.1016/j.biortech.2016.01.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 06/05/2023]
Abstract
Tannase from Aspergillus tubingensis was immobilized onto carboxyl-functionalized Fe3O4 nanoparticles (CMNPs), and conditions affecting tannase immobilization were investigated. Successful binding between CMNPs and tannase was confirmed by Fourier transform infrared spectroscopy and thermogravimetric analysis. Vibrating sample magnetometry and X-ray diffraction showed that the CMNPs and immobilized tannase exhibit distinct magnetic responses and superparamagnetic properties. Free and immobilized tannase exhibited identical optimal temperatures of 50°C and differing pH optima at 6 and 7, respectively. The thermal, pH, and storage stabilities of the immobilized tannase were superior to those of free tannase. After six cycles of catalytic hydrolysis of propyl gallate, the immobilized tannase maintained over 60% of its initial activity. The Michaelis constant (Km) of the immobilized enzyme indicated its higher affinity for substrate binding than the free enzyme.
Collapse
Affiliation(s)
- Changzheng Wu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; The Research Center of Food Biotechnology, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Caiyun Xu
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Hui Ni
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; The Research Center of Food Biotechnology, Xiamen 361021, China
| | - Qiuming Yang
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; The Research Center of Food Biotechnology, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China
| | - Huinong Cai
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; The Research Center of Food Biotechnology, Xiamen 361021, China
| | - Anfeng Xiao
- College of Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen, Fujian Province 361021, China; The Research Center of Food Biotechnology, Xiamen 361021, China; Xiamen Key Laboratory of Marine Functional Food, Xiamen 361021, China.
| |
Collapse
|
16
|
Preparation and characterization of κ-carrageenase immobilized onto magnetic iron oxide nanoparticles. ELECTRON J BIOTECHN 2016. [DOI: 10.1016/j.ejbt.2015.10.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
17
|
Efficient production of peracetic acid in aqueous solution with cephalosporin-deacetylating acetyl xylan esterase from Bacillus subtilis. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Xia DL, Chen YP, Chen C, Wang YF, Li XD, He H, Gu HY. Comparative Study of Biosafety, DNA, and Chromosome Damage of Different-Materials-Modified Fe3O4 in Rats. Appl Biochem Biotechnol 2015; 177:1069-82. [DOI: 10.1007/s12010-015-1797-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 08/02/2015] [Indexed: 12/22/2022]
|
19
|
Xu JK, Zhang FF, Sun JJ, Sheng J, Wang F, Sun M. Bio and nanomaterials based on Fe3O4. Molecules 2014; 19:21506-28. [PMID: 25532846 PMCID: PMC6271433 DOI: 10.3390/molecules191221506] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/16/2014] [Accepted: 12/17/2014] [Indexed: 12/27/2022] Open
Abstract
During the past few years, nanoparticles have been used for various applications including, but not limited to, protein immobilization, bioseparation, environmental treatment, biomedical and bioengineering usage, and food analysis. Among all types of nanoparticles, superparamagnetic iron oxide nanoparticles, especially Fe3O4, have attracted a great deal of attention due to their unique magnetic properties and the ability of being easily chemical modified for improved biocompatibility, dispersibility. This review covers recent advances in the fabrication of functional materials based on Fe3O4 nanoparticles together with their possibilities and limitations for application in different fields.
Collapse
Affiliation(s)
- Jia-Kun Xu
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang-Fang Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jing-Jing Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Jun Sheng
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Fang Wang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| | - Mi Sun
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China.
| |
Collapse
|