1
|
Rustamova N, Huang G, Isokov M, Movlanov J, Farid R, Buston I, Xiang H, Davranov K, Yili A. Modification of natural compounds through biotransformation process by microorganisms and their pharmacological properties. Fitoterapia 2024; 179:106227. [PMID: 39326800 DOI: 10.1016/j.fitote.2024.106227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
The biotransformation of natural compounds by fungal microorganisms is a complex biochemical process. Tandem whole-cell biotransformation offers a promising, alternative, and cost-effective method for modifying of bioactive novel compounds. This approach is particularly beneficial for structurally complex natural products that are difficult to be synthesized through traditional synthetic methods. Biotransformation also provides significant regio- and stereoselectivity, making it a valuable tool for the chemical modification of natural compounds. By utilizing microbial conversion reactions, the biological activity and structural diversity of natural products can be enhanced. In this review, we have summarized 282 novel metabolites resulting from microbial transformation by various microorganisms. We discussed the chemical structures and pharmacological properties of these novel biotransformation products. The review would assist scientists working in the fields of biotechnology, organic chemistry, medicinal chemistry, and pharmacology.
Collapse
Affiliation(s)
- Nigora Rustamova
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China; Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan; Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan.
| | - Guozheng Huang
- Department of Chemical Biology and Pharmaceutical Engineering, School of Chemistry and Chemical Engineering, Anhui University of Technology, 59 Hudong Road, Ma'anshan 243002, Anhui, China
| | - Maksud Isokov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Jakhongir Movlanov
- University of Geological Science, Center of Geoinnovation Technologies, 100041 Tashkent, Uzbekistan
| | - Ruziev Farid
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Islamov Buston
- Department of Biology, Samarkand State University, University Boulevard 15, Samarkand 703004, Uzbekistan
| | - Hua Xiang
- Institute Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kahramon Davranov
- Department of Enzymology, Institute of Microbiology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Shaykhantakhur district, street Abdulla Kadiriy, 7 B100128, Uzbekistan
| | - Abulimiti Yili
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi 830011, China.
| |
Collapse
|
2
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
3
|
Aminudin NI, Abdul Aziz AA, Zainal Abidin ZA, Susanti D, Taher M. Enantioselective dihydroxylation of xanthorrhizol from Curcuma xanthorrhiza via biotransformation using Aspergillus Niger. Nat Prod Res 2024; 38:1583-1590. [PMID: 36577029 DOI: 10.1080/14786419.2022.2161543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
Biotransformation is acknowledged as one of the green chemistry methods to synthesis various analogues for further valorization of natural product compounds chemistry and bioactivities. It has huge advantage over chemical synthesis due to its cost-efficiency and higher selectivity. In this work, a xanthorrhizol derivatives, namely (7 R,10S)-10,11-dihydro-10,11-dihydroxyxanthorrhizol was produced in 60% yield from the biotransformation process utilizing A. niger. The structure of the compound was established by extensive spectroscopic methods and comparison with literature data. This biotransformation successfully afforded enantioselective dihydroxylation reaction via green chemistry route. This is the first report on both biotransformation of xanthorrhizol and utilization of A. niger as its biocatalyst.
Collapse
Affiliation(s)
- Nurul Iman Aminudin
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Ahmad Amzar Abdul Aziz
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Zaima Azira Zainal Abidin
- Department of Biotechnology, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Deny Susanti
- Department of Chemistry, Kulliyyah of Science, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia (IIUM), Kuantan, Pahang, Malaysia
| |
Collapse
|
4
|
Agwunobi DO, Wang M, Wang Z, Bai R, Wang R, Hu Q, Yu Z, Liu J. The toxicity of the monoterpenes from lemongrass is mitigated by the detoxifying symbiosis of bacteria and fungi in the tick Haemaphysalis longicornis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114261. [PMID: 36332404 DOI: 10.1016/j.ecoenv.2022.114261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/23/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
The entry mode of terpenes into the atmosphere is via volatilization of hydrocarbons from foliage over heavily forested areas besides entering the environment through surface water runoff. Some monoterpenes in essential oils are phytotoxins, acting as plant chemical defenses against bacteria or fungi infections and plant-eating insects. For organisms to survive, their enzymatic systems are activated in response to an assault by potentially harmful compounds. Certain bacterial and fungal genera have developed special abilities to transform toxic terpenes into less toxic derivatives. Here, we investigated the response of the bacterial and fungal community in Haemaphysalis longicornis exposed to Cymbopogon citratus (lemongrass) essential oil (EO) and citronellal. Sequencing of bacterial 16S rRNA and fungal ITS1 regions on an Illumina NovaSeq PE250 sequencing platform was performed for H. longicornis tick samples treated with 15 and 20 mg/mL of lemongrass essential oil and citronellal. The diversity recorded in samples treated with C. citratus EO was higher in comparison to those treated with citronellal but significantly lower in the control samples as reflected by the Shannon diversity index. All major H. longicornis bacterial phyla, including Proteobacteria (93.81 %), Firmicutes (2.58 %), and Bacteroidota (0.99 %) were detected. A switch of dominance from Coxiella to Pseudomonas, which has high biotransformation capacity, was observed in the bacterial community, whereas the phylum Ascomycota (Genera: Aspergillus, Archaeorhizomyces, Alternaria, and Candida) dominated in the fungal community indicating detoxifying symbiosis. Other significantly abundant bacterial genera include Ralstonia, Acinetobacter, Vibrio, and Pseudoalteromonas, while Ganoderma and Trichosporon (yeasts) spp. represented the fungi Basidiomycota. This study expanded the understanding of enzymatic modification of phytotoxic substances by microorganisms, which could provide deeper insights into the mitigation of harmful phytotoxins and the synthesis of eco-friendly derivatives for the control of ticks.
Collapse
Affiliation(s)
- Desmond O Agwunobi
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Min Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zihao Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Ruwei Bai
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Ruotong Wang
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Qiuyu Hu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China
| | - Zhijun Yu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| | - Jingze Liu
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, Hebei Collaborative Innovation Center for Eco-Environment, Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, PR China.
| |
Collapse
|
5
|
Mittal R, Srivastava G, Ganjewala D. An update on the progress of microbial biotransformation of commercial monoterpenes. Z NATURFORSCH C 2022; 77:225-240. [PMID: 34881551 DOI: 10.1515/znc-2021-0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/14/2021] [Indexed: 01/05/2023]
Abstract
Monoterpenes, a class of isoprenoid compounds, are extensively used in flavor, fragrance, perfumery, and cosmetics. They display many astonishing bioactive properties of biological and pharmacological significance. All monoterpenes are derived from universal precursor geranyl diphosphate. The demand for new monoterpenoids has been increasing in flavor, fragrances, perfumery, and pharmaceuticals. Chemical methods, which are harmful for human and the environment, synthesize most of these products. Over the years, researchers have developed alternative methods for the production of newer monoterpenoids. Microbial biotransformation is one of them, which relied on microbes and their enzymes. It has produced many new desirable commercially important monoterpenoids. A growing number of reports reflect an ever-expanding scope of microbial biotransformation in food and aroma industries. Simultaneously, our knowledge of the enzymology of monoterpene biosynthetic pathways has been increasing, which facilitated the biotransformation of monoterpenes. In this article, we have covered the progress made on microbial biotransformation of commercial monoterpenes with a brief introduction to their biosynthesis. We have collected several reports from authentic web sources, including Google Scholar, Pubmed, Web of Science, and Scopus published in the past few years to extract information on the topic.
Collapse
Affiliation(s)
- Ruchika Mittal
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| | - Gauri Srivastava
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| | - Deepak Ganjewala
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector-125, Noida 201303, UP, India
| |
Collapse
|
6
|
Bilgi M, Peksel A. Induction of Phenol Hydroxylase from
Aspergillus niger
and Its Optimization. ChemistrySelect 2022. [DOI: 10.1002/slct.202103838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mesut Bilgi
- Department of Chemistry Yildiz Technical University Davutpasa Campus 34220 Davutpasa Istanbul Turkey
| | - Aysegul Peksel
- Department of Chemistry Yildiz Technical University Davutpasa Campus 34220 Davutpasa Istanbul Turkey
| |
Collapse
|
7
|
Fungal biotransformation of limonene and pinene for aroma production. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00239-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
8
|
Nievierowski TH, Veras FF, Silveira RD, Dachery B, Hernandes KC, Lopes FC, Scortegagna E, Zini CA, Welke JE. Role of partial dehydration in a naturally ventilated room on the mycobiota, ochratoxins, volatile profile and phenolic composition of Merlot grapes intended for wine production. Food Res Int 2021; 141:110145. [PMID: 33642011 DOI: 10.1016/j.foodres.2021.110145] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/09/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022]
Abstract
Dehydration of grapes has been used in various regions of the world to produce special wines, aiming to add value to oenological products. Post-harvest dehydration in rooms may be carried out regardless of weather conditions, without the additional cost of a specific infrastructure, in addition to the benefits of protecting the grapes from damages and environmental pollution. The objective of this study was to verify, for the first time, the impact of the dehydration in a naturally ventilated room on the quality of Merlot grapes. Physicochemical characteristics, mycobiota, occurrence of mycotoxins, volatile profile and phenolic composition of grapes were monitored on 7th, 14th and 21st days of dehydration (weight loss of 10, 20 and 27%, respectively). A decrease in aw (6%), pH (4%), and berry hardness (58%), along with an increase in total soluble solid content (15%) were observed during dehydration. The presence of Pestalotiopsis clavispora, Neopestalotiopsis clavispora, Colletotrichum siamense and Alternaria porri was favored during the dehydration process, while a decrease in the occurrence of Aspergillus niger and Phanerochaete sp. was verified. A. niger isolates showed no potential to produce forms of ochratoxins. These toxins were also not found in the grape samples. Regarding the volatile profile, 1-hexanal, 2-hexenal, and 1-octanal gave rise to the corresponding alcohols during dehydration, such as 1-hexanol, 2-hexen-1-ol, and 1-octanol. Acids (hexanoic, decanoic, and 3-hexenoic) resulted in the respective ethyl esters (hexanoate, decanoate, and ethyl 3-hexenoate) during dehydration. Terpenes as limonene, myrcene, and geraniol decreased throughout dehydration, while their biotransformation products (α-terpineol, 6-methyl-5-hepten-2-one, and linalool, respectively) had an increase in concentration. The phenolic content oscillated during dehydration, with an emphasis on increased levels of four hydroxybenzoic acids (ethyl gallate, p-hydroxybenzoic acid, gallic acid-hexose, and gallic acid), two hydroxycinnamic acids (caffeic acid and caftaric acid), two flavonols (kaempeferol galactoside and quercetin) and two anthocyanins (peonidin 3-O-hexoside and delphinidin 3-O-hexoside). Grapes of satisfactory quality were produced by dehydration in a naturally ventilated room. Even small wine producers can be encouraged to implement this procedure for the diversification of oenological products, as it has no costs related to the implementation of chambers/tunnels.
Collapse
Affiliation(s)
- Tássia Henrique Nievierowski
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501-970 Porto Alegre, Brazil
| | - Flávio Fonseca Veras
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501-970 Porto Alegre, Brazil
| | - Rafaela Diogo Silveira
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501-970 Porto Alegre, Brazil
| | - Bruna Dachery
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501-970 Porto Alegre, Brazil
| | - Karolina Cardoso Hernandes
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501-970 Porto Alegre, Brazil
| | - Fernanda Cortez Lopes
- Centro de Biotecnologia, Programa de Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43431, CEP 91501-970 Porto Alegre, Brazil
| | - Edegar Scortegagna
- Luiz Argenta Vinhos Finos, Av. 25 de Julho, 700, CEP: 95270-000 Flores da Cunha, Brazil; ConceptWine - Escola Profissional de Vinhos, Flores da Cunha, Brazil
| | - Claudia Alcaraz Zini
- Instituto de Química (IQ), UFRGS, Av. Bento Gonçalves, 9500, Prédio 43111, CEP 91501-970 Porto Alegre, Brazil
| | - Juliane Elisa Welke
- Instituto de Ciência e Tecnologia de Alimentos (ICTA), Universidade Federal do Rio Grande do Sul (UFRGS), Av. Bento Gonçalves, 9500, Prédio 43212, CEP 91501-970 Porto Alegre, Brazil.
| |
Collapse
|
9
|
New Bromo- and Iodo-Hydroxylactones with Two Methyl Groups Obtained by Biotransformation of Bicyclic Halolactones. Catalysts 2021. [DOI: 10.3390/catal11010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The subject of the research was to determine the ability of the filamentous fungi to biotransform bicyclic halolactones containing two methyl groups in their structure. By chemical synthesis three bicyclic halolactones with two methyl groups, one in the cyclohexane ring and one in the lactone ring, were obtained: 2-chloro-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, 2-bromo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, and 2-iodo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one. These compounds were formed as mixtures of two diastereoisomers. The obtained halolactones (as mixture of two diastereoisomers) were subjected to screening biotransformation with the use of eight strains of filamentous fungi: Fusarium culmorum AM10, F. avenaceum AM12, F. semitectum AM20, F. solani AM203, Absidia coerulea AM93, A. cylindrospora AM336, Penicillium chermesinum AM113, P. frequentans AM351. Two of the substrates, 2-bromo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one and 2-iodo-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, were hydroxylated without removing the halogen atom from the molecule, giving 2-bromo-7-hydroxy-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, 2-bromo-5-hydroxy-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one, and 2-iodo-7-hydroxy-4,7-dimethyl-9-oxabicyclo[4.3.0]nonan-8-one as products. The hydroxylation capacity was demonstrated by strains of Absidia cylindrospora AM336, Fusarium avenaceum AM12, and F. solani AM203. The structures of all lactones were determined on the basis spectroscopic data.
Collapse
|
10
|
Kozłowska E, Matera A, Sycz J, Kancelista A, Kostrzewa-Susłow E, Janeczko T. New 6,19-oxidoandrostan derivatives obtained by biotransformation in environmental filamentous fungi cultures. Microb Cell Fact 2020; 19:37. [PMID: 32066453 PMCID: PMC7026961 DOI: 10.1186/s12934-020-01303-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Background Steroid compounds with a 6,19-oxirane bridge possess interesting biological activities including anticonvulsant and analgesic properties, bacteriostatic activity against Gram-positive bacteria and selective anti-glucocorticoid action, while lacking mineralocorticoid and progestagen activity. Results The study aimed to obtain new derivatives of 3β-acetyloxy-5α-chloro-6,19-oxidoandrostan-17-one by microbial transformation. Twelve filamentous fungal strains were used as catalysts, including entomopathogenic strains with specific activity in the transformation of steroid compounds. All selected strains were characterised by high biotransformation capacity for steroid compounds. However, high substrate conversions were obtained in the cultures of 8 strains: Beauveria bassiana KCh BBT, Beauveria caledonica KCh J3.4, Penicillium commune KCh W7, Penicillium chrysogenum KCh S4, Mucor hiemalis KCh W2, Fusarium acuminatum KCh S1, Trichoderma atroviride KCh TRW and Isaria farinosa KCh KW1.1. Based on gas chromatography (GC) and nuclear magnetic resonance (NMR) analyses, it was found that almost all strains hydrolysed the ester bond of the acetyl group. The strain M. hiemalis KCh W2 reduced the carbonyl group additionally. From the P. commune KCh W7 and P. chrysogenum KCh S4 strain cultures a product of D-ring Baeyer–Villiger oxidation was isolated, whereas from the culture of B. bassiana KCh BBT a product of hydroxylation at the 11α position and oxidation of the D ring was obtained. Three 11α-hydroxy derivatives were obtained in the culture of I. farinosa KCh KW1.1: 3β,11α-dihydroxy-5α-chloro-6,19-oxidoandrostan-17-one, 3β,11α,19-trihydroxy-5α-chloro-6,19-oxidoandrostan-17-one and 3β,11α-dihydroxy-5α-chloro-6,19-oxidoandrostan-17,19-dione. They are a result of consecutive reactions of hydrolysis of the acetyl group at C-3, 11α- hydroxylation, then hydroxylation at C-19 and its further oxidation to lactone. Conclusions As a result of the biotransformations, seven steroid derivatives, not previously described in the literature, were obtained: 3β-hydroxy-5α-chloro-6,19-oxidoandrostan-17-one, 3β,17α-dihydroxy-5α-chloro-6,19-oxidoandrostane, 3β-hydroxy-5α-chloro-17α-oxa-D-homo-6,19-oxidoandrostan-17-one, 3β,11α-dihydroxy-5α-chloro-17α-oxa-D-homo-6,19-oxidoandrostan-17-one and the three above–mentioned 11α-hydroxy derivatives. This study will allow a better understanding and characterisation of the catalytic abilities of individual microorganisms, which is crucial for more accurate planning of experiments and achieving more predictable results.
Collapse
Affiliation(s)
- Ewa Kozłowska
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| | - Agata Matera
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Jordan Sycz
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Anna Kancelista
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, Chełmońskiego 37, 51-630, Wrocław, Poland
| | - Edyta Kostrzewa-Susłow
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland
| | - Tomasz Janeczko
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375, Wrocław, Poland.
| |
Collapse
|
11
|
Fungal biocatalysts for labdane diterpene hydroxylation. Bioprocess Biosyst Eng 2020; 43:1051-1059. [PMID: 32020446 DOI: 10.1007/s00449-020-02303-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/27/2020] [Indexed: 01/23/2023]
Abstract
Labdane diterpenes and their derivatives have shown remarkable biological activities and are useful as chiral building blocks for the synthesis of a variety of bioactive compounds. There is great interest in developing biocatalyst technology to achieve regio- and stereoselective hydroxylation of unactivated C-H bonds in complex natural products, since the functionalization of unactivated C-H bonds generally requires hard reaction conditions and highly reactive oxidizing agents, which are limited regarding the control of regio- and stereoselectivity. Filamentous fungi are efficient biocatalysts capable of catalyzing a wide variety of hydroxylation reactions, and the use of whole cell biocatalysts provides advantages regarding cofactor regeneration and is much less expensive. Therefore, the goal of this study was to select biocatalysts to develop biotransformation processes that can be scalable under mild reaction conditions for hydroxylation of a labdane diterpene, 3β-acetoxy-copalic acid, which contains the trans-decalin moiety and a side chain dienic system appropriate for the preparation of a variety of compounds. Biotransformation processes were carried out and five filamentous fungi were selected as capable of producing hydroxylated diterpenes at positions C-3, C-6, C-7 and C-18 of the trans-decalin moiety and C-13 of the side chain dienic system. Hydroxylation reactions occurred with regio- and stereoselectivity by using some fungi that produced only the 6α, 7α and 13α-hydroxyl derivatives. The chemical structures of the hydroxylated diterpenes were determined from spectrometric and spectroscopic data, and the relative stereochemistry of stereogenic centers was established from coupling constants, by NOE-diff experiments and/or by computational calculations.
Collapse
|
12
|
Herrera-Canché SG, Sánchez-González M, Loyola LA, Bórquez J, García-Sosa K, Peña-Rodríguez LM. Biotransformation of a mulinane diterpenoid by Aspergillus alliaceus and Mucor circinelloides. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1596083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Stephanie G. Herrera-Canché
- Laboratorio de Química Orgánica, Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, México
| | | | - Luis A. Loyola
- Departamento de Química, Facultad de Ciencias Básicas, Laboratorio de Productos Naturales, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Bórquez
- Departamento de Química, Facultad de Ciencias Básicas, Laboratorio de Productos Naturales, Universidad de Antofagasta, Antofagasta, Chile
| | - Karlina García-Sosa
- Laboratorio de Química Orgánica, Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, México
| | - Luis Manuel Peña-Rodríguez
- Laboratorio de Química Orgánica, Centro de Investigación Científica de Yucatán, Unidad de Biotecnología, Mérida, México
| |
Collapse
|
13
|
da Costa RM, Bastos JK, Costa MCA, Ferreira MMC, Mizuno CS, Caramori GF, Nagurniak GR, Simão MR, Dos Santos RA, Veneziani RCS, Ambrósio SR, Parreira RLT. In vitro cytotoxicity and structure-activity relationship approaches of ent-kaurenoic acid derivatives against human breast carcinoma cell line. PHYTOCHEMISTRY 2018; 156:214-223. [PMID: 30321792 DOI: 10.1016/j.phytochem.2018.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/03/2018] [Accepted: 10/03/2018] [Indexed: 05/23/2023]
Abstract
In this study, ent-kaurenoic acid derivatives were obtained by microbial transformation methodologies and tested against breast cancer cell lines (MCF-7). A multivariate quantitative-structure activity relationship (QSAR) analysis was performed taking into account both microbial transformation derivatives and other analogues previously reported in literature to give some insight into the main features behind the cytotoxic activity displayed by kaurane-type diterpenes against MCF-7 cells. The partial least square regression (PLS) method was employed in the training set and the best PLS model was built with a factor describing 69.92% of variance and three descriptors (logP, εHOMO and εHOMO-1) selected by the Ordered Predictors Selection (OPS) algorithm. The QSAR model provided reasonable regression (Q2 = 0.64, R2 = 0.72, SEC = 0.29 and SEV = 0.33). The model was validated by leave-N-out cross-validation, y-randomization and external validation (R2pred = 0.89 and SEP = 0.27). The selected descriptors indicated that the activity was mainly related to electronic parameters (HOMO and HOMO-1 molecular orbital energies), as well as to logP. These findings suggest that higher activity values are directly related with both higher logP and frontier orbital energy values. The positive relationship between these orbitals and the activity suggests that the ent-kaurenoic acid analogues interaction with the target involves charge displacement, which is entirely consistent with the literature. Based on these findings, three compounds were proposed and one of them was synthesized and tested. The experimental result confirmed the activity predicted by the model.
Collapse
Affiliation(s)
- Ricardo M da Costa
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil; Informática Aplicada às Ciências - IFSULDEMINAS, Muzambinho, MG, Brazil
| | - Jairo K Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Maria C A Costa
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas - Unicamp, Campinas, SP, Brazil
| | - Márcia M C Ferreira
- Theoretical and Applied Chemometrics Laboratory (LQTA), Institute of Chemistry, University of Campinas - Unicamp, Campinas, SP, Brazil
| | - Cássia S Mizuno
- Department of Pharmaceutical Sciences, University of New England, College of Pharmacy, Portland, ME, USA
| | - Giovanni F Caramori
- Departamento de Química, Universidade Federal de Santa Catarina, Campos Universitário Trindade, Florianópolis, SC, Brazil
| | - Gláucio R Nagurniak
- Departamento de Química, Universidade Federal de Santa Catarina, Campos Universitário Trindade, Florianópolis, SC, Brazil
| | - Marília R Simão
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil
| | - Raquel A Dos Santos
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil
| | - Rodrigo C S Veneziani
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil
| | - Sérgio R Ambrósio
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil.
| | - Renato L T Parreira
- Núcleo de Pesquisa em Ciências Exatas e Tecnológicas da Universidade de Franca - UNIFRAN, Franca, SP, Brazil.
| |
Collapse
|
14
|
Cecati FM, Magallanes-Noguera C, Tonn CE, Ardanaz CE, Kurina-Sanz M. Ecofriendly chemical diversification of Eupatorium buniifolium essential oil by endophytic fungi. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.09.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Świzdor A, Panek A, Milecka-Tronina N. Hydroxylative activity of Aspergillus niger towards androst-4-ene and androst-5-ene steroids. Steroids 2017; 126:101-106. [PMID: 28827070 DOI: 10.1016/j.steroids.2017.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 08/05/2017] [Accepted: 08/14/2017] [Indexed: 11/27/2022]
Abstract
Aspergillus niger, one of fungal species most frequently used for experimental and industrial-scale biotransformations of various organic compounds, is generally known to transform steroids at 16β position. In this work, application of the strain A. niger KCH910 to bioconversion of dehydroepiandrosterone (DHEA), androstenediol and testosterone is described, with emphasis on the metabolic steps leading to the products. Evidence from this study indicated that incubated 5-ene steroids underwent bioconversion within two metabolic pathways: oxidation by the action of 3β-HSD (3β-hydroxysteroid dehydrogenase) to 4-ene steroids, and minor allylic hydroxylation to epimeric 7-alcohols. Further transformation of the 3-oxo-4-ene metabolites resulted in non-selective 16-hydroxylation. It is the first report on an A. niger strain able to introduce not only 16β- but also 16α-hydroxyl function into steroids.
Collapse
Affiliation(s)
- Alina Świzdor
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Anna Panek
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland.
| | - Natalia Milecka-Tronina
- Department of Chemistry, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
16
|
Ahmed S, Zhan C, Yang Y, Wang X, Yang T, Zhao Z, Zhang Q, Li X, Hu X. The Transcript Profile of a Traditional Chinese Medicine, Atractylodes lancea, Revealing Its Sesquiterpenoid Biosynthesis of the Major Active Components. PLoS One 2016; 11:e0151975. [PMID: 26990438 PMCID: PMC4798728 DOI: 10.1371/journal.pone.0151975] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Accepted: 03/07/2016] [Indexed: 11/18/2022] Open
Abstract
Atractylodes lancea (Thunb.) DC., named “Cangzhu” in China, which belongs to the Asteraceae family. In some countries of Southeast Asia (China, Thailand, Korea, Japan etc.) its rhizome, commonly called rhizoma atractylodis, is used to treat many diseases as it contains a variety of sesquiterpenoids and other components of medicinal importance. Despite its medicinal value, the information of the sesquiterpenoid biosynthesis is largely unknown. In this study, we investigated the transcriptome analysis of different tissues of non-model plant A. lancea by using short read sequencing technology (Illumina). We found 62,352 high quality unigenes with an average sequence length of 913 bp in the transcripts of A. Lancea. Among these, 43,049 (69.04%), 30,264 (48.53%), 26,233 (42.07%), 17,881 (28.67%) and 29,057(46.60%) unigenes showed significant similarity (E-value<1e-5) to known proteins in Nr, KEGG, SWISS-PROT, GO, and COG databases, respectively. Of the total 62,352 unigenes, 43,049 (Nr Database) open reading frames were predicted. On the basis of different bioinformatics tools we identify all the enzymes that take part in the terpenoid biosynthesis as well as five different known sesquiterpenoids via cytosolic mevalonic acid (MVA) pathway and plastidal methylerythritol phosphate (MEP) pathways. In our study, 6, 864 Simple Sequence Repeats (SSRs) were also found as great potential markers in A. lancea. This transcriptomic resource of A. lancea provides a great contribution in advancement of research for this specific medicinal plant and more specifically for the gene mining of different classes of terpenoids and other chemical compounds that have medicinal as well as economic importance.
Collapse
Affiliation(s)
- Shakeel Ahmed
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Chuansong Zhan
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Yanyan Yang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xuekui Wang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Tewu Yang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Zeying Zhao
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Qiyun Zhang
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xiaohua Li
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Xuebo Hu
- Department of Medicinal Plant, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Center for Plant Functional Components, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- National-Regional Joint Engineering Research Center in Hubei for Medicinal Plant Breeding and Cultivation, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- Engineering Research Center for Medicinal Plants, Huazhong Agricultural University, Wuhan, 430070, P.R. China
- * E-mail:
| |
Collapse
|
17
|
Parshikov IA, Woodling KA, Sutherland JB. Biotransformations of organic compounds mediated by cultures of Aspergillus niger. Appl Microbiol Biotechnol 2015; 99:6971-86. [DOI: 10.1007/s00253-015-6765-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 06/02/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022]
|
18
|
Biotransformation of Steroids and Flavonoids by Cultures of Aspergillus niger. Appl Biochem Biotechnol 2015; 176:903-23. [DOI: 10.1007/s12010-015-1619-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
|