1
|
Das A, Banik BK. Microwave-induced biocatalytic reactions toward medicinally important compounds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Microwaves in the presence of enzymes are used to execute a number of reactions for the preparation of biologically active compounds. The success of microwave-induced enzymatic reactions depends on frequencies, field strength, waveform, duration, and modulation of the exposure. Enzymes under microwave irradiation become activated and this activation is sufficient to investigate simple to complex reactions that were not reported under these reaction conditions before. Enzymatic catalysis together with microwave technology and solvent-free chemical reaction is a nature-friendly procedure. The most interesting reactions that are performed by enzymes in the microwave are documented here with reference to examples that are related to medicinally active molecules.
Collapse
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences , College of Sciences and Human Studies, Prince Mohammad Bin Fahd University , Al Khobar 31952 , Kingdom of Saudi Arabia
| |
Collapse
|
2
|
Microwave-assisted lipase-catalyzed synthesis of polyethylene glycol stearate in a solvent-free system. J INDIAN CHEM SOC 2021. [DOI: 10.1016/j.jics.2021.100131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Bhushan R. Liquid chromatographic enantioseparation, determination, bioassay and isolation of enantiomers of Ketorolac: A review. ACTA CHROMATOGR 2021. [DOI: 10.1556/1326.2021.00945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
AbstractKetorolac (Ket) is a potent non-narcotic analgesic drug (among the nonsteroidal anti-inflammatory drugs). The physiological activity of Ket resides with (S)-(−)-Ket while the drug is marketed and administered as a racemic mixture. Therefore, it is desirable that the pharmacokinetics is measured and quantified for enantiomers individually and not as a total drug. The present paper is focused on relevant literature on LC enantioseparation of (RS)-Ket along with bioassay, pharmacokinetic and clinical studies within the discipline of analytical chemistry. HPLC and Thin layer chromatography (TLC) methods using both direct and indirect approaches are discussed. The methods provide chirality recognition even in the absence of pure enantiomers. Besides, a brief discussion on resolution by crystallization and enzymatic methods is included. The most interesting aspects include establishment of structure and molecular asymmetry of diastereomeric derivatives using LC-MS, proton nuclear magnetic resonance spectrometry, and by drawing conformations in three dimensional views by using certain software. A brief discussion has also been provided on the recovery of native enantiomers by TLC.
Collapse
Affiliation(s)
- Ravi Bhushan
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| |
Collapse
|
4
|
Zhou L, Lu Y, Sun G. Open tubular capillary column immobilized with sulfobutylether-β-cyclodextrin for chiral separation in capillary electrochromatography. J Sep Sci 2021; 44:2037-2045. [PMID: 33683009 DOI: 10.1002/jssc.202100037] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/11/2022]
Abstract
A novel chiral open tubular capillary column was fabricated with sulfobutylether-β-cyclodextrin and glycidyl methacrylate for enantioseparation in capillary electrochromatography. First, the pretreated silica-fused capillary was treated with 3-trimethoxysilyl propyl methacrylate to attach double bond ligand onto the surface. A copolymer layer was formed on the surface of capillary using glycidyl methacrylate and ethylene dimethacrylate by in situ one-pot polymerization. Sulfobutylether-β-cyclodextrin was encapsulated inside the copolymerized layer. The morphology of the developed column was characterized by field emission scanning electron microscopy. The effect of organic percentage and pH value of the mobile phase on electroosmotic flow and resolution was also investigated. The performance of the fabricated column was validated by separation of amlodipine besilate, 2,3-diphenylpropionic acid, tropic acid, and pantoprazole enantiomers with good resolutions of 3.67, 4.82, 3.34, and 2.61, respectively. The repeatabilities of column-to-column and day-to-day through relative standard deviation were found better than 4%, exhibiting satisfactory repeatability of the developed column. The results reveal that open tubular capillary columns modified with β-cyclodextrin show a great prospect for enantioseparation of chiral drugs in capillary electrochromatography.
Collapse
Affiliation(s)
- Lifen Zhou
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Yao Lu
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| | - Genlin Sun
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P. R. China
| |
Collapse
|
5
|
Salvi HM, Yadav GD. Process intensification using immobilized enzymes for the development of white biotechnology. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00020a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Process intensification of biocatalysed reactions using different techniques such as microwaves, ultrasound, hydrodynamic cavitation, ionic liquids, microreactors and flow chemistry in various industries is critically analysed and future directions provided.
Collapse
Affiliation(s)
- Harshada M. Salvi
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| | - Ganapati D. Yadav
- Department of Chemical Engineering
- Institute of Chemical Technology
- Mumbai-400019
- India
| |
Collapse
|
6
|
Salvi H, Yadav GD. Chemoenzymatic Epoxidation of Limonene Using a Novel Surface-Functionalized Silica Catalyst Derived from Agricultural Waste. ACS OMEGA 2020; 5:22940-22950. [PMID: 32954143 PMCID: PMC7495740 DOI: 10.1021/acsomega.0c02462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/12/2020] [Indexed: 05/13/2023]
Abstract
Limonene is one of the most important terpenes having wide applications in food and fragrance industries. The epoxide of limonene, limonene oxide, finds important applications as a versatile synthetic intermediate in the chemical industry. Therefore, attempts have been made to synthesize limonene oxide using eco-friendly processes because of stringent regulations on its production. In this regard, we have attempted to synthesize it using a cost-effective and eco-friendly process. Chemoenzymatic epoxidation of limonene to limonene oxide was carried out using in situ generation of peroxy octanoic acid from octanoic acid and H2O2. In this study, agricultural-waste rice husk ash (RHA)-derived silica was surface-functionalized using (3-aminopropyl) triethoxysilane (APTS), which was cross-linked using glutaraldehyde for immobilization of Candida antarctica lipase B. Furthermore, the immobilized enzyme was entrapped in calcium alginate beads to avoid enzyme leaching. Thus, limonene oxide was prepared using this catalyst under conventional and microwave heating. The microwave irradiation intensifies the process, reducing the reaction time under the same conditions. Maximum conversion of limonene to limonene oxide of 75.35 ± 0.98% was obtained in 2 h at 50 °C using a microwave power of 50 W. In the absence of microwave irradiation, the conventional heating gave 44.6 ± 1.14% conversion in 12 h. The reaction mechanism was studied using the Lineweaver-Burk plot, which follows a ternary complex mechanism with inhibition due to peroxyoctanoic acid (in other words H2O2). The prepared catalyst shows high reusability and operational stability up to four cycles.
Collapse
|
7
|
Yuan X, Wang L, Zhang P, Xu W, Tang K. Enantioselective esterification of (R,S)-2-(4-methylphenyl) propionic acid via Novozym 435: Optimization and application. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
8
|
Pérez‐Venegas M, Rodríguez‐Treviño AM, Juaristi E. Dual Mechanoenzymatic Kinetic Resolution of (±)‐Ketorolac. ChemCatChem 2020. [DOI: 10.1002/cctc.201902292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mario Pérez‐Venegas
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
| | | | - Eusebio Juaristi
- Department of ChemistryCentro de Investigación y de Estudios Avanzados Av. IPN 2508 Ciudad de México 07360 Mexico
- El Colegio Nacional Donceles 104 Ciudad de México 06020 Mexico
| |
Collapse
|
9
|
Zeng Q, Dai M, Yang Y, Su D, Feng S, He S, Tian B. Significant fat reduction in deep-fried kamaboko by fish protein hydrolysates derived from common carp (Cyprinus carpio). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3255-3263. [PMID: 30549052 DOI: 10.1002/jsfa.9538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 12/03/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND To evaluate their fat reduction effect, common carp fish protein hydrolysates (FPH) were made using four methods: the conventional enzymatic process, a microwave-intensified enzymatic process, the conventional alkaline hydrolysis process, and a microwave-intensified alkaline hydrolysis process. RESULTS The efficiency of protein extraction was significantly enhanced by microwave intensification. The oil-holding capacities of FPH produced by these four processes were all lower than that of raw fish protein. The water-holding capacities of FPH produced by these four processes were all higher than that of raw fish protein. The FPH from the four processes and raw fish protein were used in the preparation of deep-fried kamaboko. The fat content of deep-fried kamaboko was drastically reduced from approximately 160 g kg-1 to about 50 g kg-1 by replacing 20 g kg-1 fish mince with FPH, regardless of the process. Texture profile analysis (TPA) of deep-fried kamaboko found no significant difference in hardness and brittleness among all the deep-fried kamaboko samples. The similar interior protein cross-linking micro-structure of all these samples further explained the TPA finding. CONCLUSION With the involvement of FPH in the formulation, the fat content of deep-fried kamaboko can be significantly reduced from approximately 160 to 50 g kg-1 , without a change in its texture. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Qingzhu Zeng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Mingrui Dai
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Yuan Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Dongxiao Su
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
| | - Shilun Feng
- Department of Molecular Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, Australia
| | - Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, China
- Peats Soil and Garden Supplies, Whites Valley, Australia
| | - Bin Tian
- Faculty of Agricultural and Life Sciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
10
|
Cebrián-García S, Balu AM, García A, Luque R. Sol-Gel Immobilisation of Lipases: Towards Active and Stable Biocatalysts for the Esterification of Valeric Acid. Molecules 2018; 23:molecules23092283. [PMID: 30200657 PMCID: PMC6225346 DOI: 10.3390/molecules23092283] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/20/2022] Open
Abstract
Alkyl esters are high added value products useful in a wide range of industrial sectors. A methodology based on a simple sol-gel approach (biosilicification) is herein proposed to encapsulate enzymes in order to design highly active and stable biocatalysts. Their performance was assessed through the optimization of valeric acid esterification evaluating the effect of different parameters (biocatalyst load, presence of water, reaction temperature and stirring rate) in different alcoholic media, and comparing two different methodologies: conventional heating and microwave irradiation. Ethyl valerate yields were in the 80–85% range under optimum conditions (15 min, 12% m/v biocatalyst, molar ratio 1:2 of valeric acid to alcohol). Comparatively, the biocatalysts were slightly deactivated under microwave irradiation due to enzyme denaturalisation. Biocatalyst reuse was attempted to prove that good reusability of these sol-gel immobilised enzymes could be achieved under conventional heating.
Collapse
Affiliation(s)
- Soledad Cebrián-García
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Alina M Balu
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Araceli García
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
| | - Rafael Luque
- Organic Chemistry Department, University of Cordoba, Campus de Rabanales, Edificio Marie Curie (C-3), Ctra. Nacional IV-A, Km 396, E14014 Cordoba, Spain.
- Scientific Centre for Molecular Design and Synthesis of Innovative Compounds for Medicine, Peoples Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya str., 117198 Moscow, Russia.
| |
Collapse
|
11
|
Patil PD, Yadav GD. Application of microwave assisted three phase partitioning method for purification of laccase from Trametes hirsuta. Process Biochem 2018. [DOI: 10.1016/j.procbio.2017.10.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Gupta SM, Kamble MP, Yadav GD. Insight into microwave assisted enzyme catalysis in process intensification of reaction and selectivity: Kinetic resolution of ( R,S )-flurbiprofen with alcohols. MOLECULAR CATALYSIS 2017. [DOI: 10.1016/j.mcat.2017.06.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Kamble MP, Chaudhari SA, Singhal RS, Yadav GD. Synergism of microwave irradiation and enzyme catalysis in kinetic resolution of (R,S) -1-phenylethanol by cutinase from novel isolate Fusarium ICT SAC1. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.09.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
14
|
Kamble MP, Shinde SD, Yadav GD. Kinetic resolution of ( R,S )-α-tetralol catalyzed by crosslinked Candida antarctica lipase B enzyme supported on mesocellular foam: A nanoscale enzyme reactor approach. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2016.06.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Recent Advances in Lipase-Mediated Preparation of Pharmaceuticals and Their Intermediates. Int J Mol Sci 2015; 16:29682-716. [PMID: 26690428 PMCID: PMC4691134 DOI: 10.3390/ijms161226191] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 11/04/2015] [Accepted: 11/04/2015] [Indexed: 01/26/2023] Open
Abstract
Biocatalysis offers an alternative approach to conventional chemical processes for the production of single-isomer chiral drugs. Lipases are one of the most used enzymes in the synthesis of enantiomerically pure intermediates. The use of this type of enzyme is mainly due to the characteristics of their regio-, chemo- and enantioselectivity in the resolution process of racemates, without the use of cofactors. Moreover, this class of enzymes has generally excellent stability in the presence of organic solvents, facilitating the solubility of the organic substrate to be modified. Further improvements and new applications have been achieved in the syntheses of biologically active compounds catalyzed by lipases. This review critically reports and discusses examples from recent literature (2007 to mid-2015), concerning the synthesis of enantiomerically pure active pharmaceutical ingredients (APIs) and their intermediates in which the key step involves the action of a lipase.
Collapse
|
16
|
Badgujar KC, Bhanage BM. Carbohydrate base co-polymers as an efficient immobilization matrix to enhance lipase activity for potential biocatalytic applications. Carbohydr Polym 2015; 134:709-17. [DOI: 10.1016/j.carbpol.2015.08.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 02/02/2023]
|
17
|
Tang K, Sun G, Zhang P, Yang W, Zhou C, Yang C. Modelling and optimization of a two phase system for the separation of equol enantiomers by recycling high-speed counter-current chromatography. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|