1
|
Li X, Liu Q, Gao Y, Zang P, Zheng T. Effects of a co-bacterial agent on the growth, disease control, and quality of ginseng based on rhizosphere microbial diversity. BMC PLANT BIOLOGY 2024; 24:647. [PMID: 38977968 PMCID: PMC11229274 DOI: 10.1186/s12870-024-05347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND The ginseng endophyte Paenibacillus polymyxa Pp-7250 (Pp-7250) has multifaceted roles such as preventing ginseng diseases, promoting growth, increasing ginsenoside accumulation, and degrading pesticide residues, however, these effects still have room for improvements. Composite fungicides are an effective means to improve the biocontrol effect of fungicides, but the effect of Pp-7250 in combination with its symbiotic bacteria on ginseng needs to be further investigated, and its mechanism of action has not been elucidated. In this study, a series of experiments was conducted to elucidate the effect of Paenibacillus polymyxa and Bacillus cereus co-bacterial agent on the yield and quality of understory ginseng, and to investigate their mechanism of action. RESULTS The results indicated that P. polymyxa and B. cereus co-bacterial agent (PB) treatment improved ginseng yield, ginsenoside accumulation, disease prevention, and pesticide degradation. The mechanism is that PB treatment increased the abundance of beneficial microorganisms, including Rhodanobacter, Pseudolabrys, Gemmatimonas, Bacillus, Paenibacillus, Cortinarius, Russula, Paecilomyces, and Trechispora, and decreased the abundance of pathogenic microorganisms, including Ellin6067, Acidibacter, Fusarium, Tetracladium, Alternaria, and Ilyonectria in ginseng rhizosphere soil. PB co-bacterial agents enhanced the function of microbial metabolic pathways, biosynthesis of secondary metabolites, biosynthesis of antibiotics, biosynthesis of amino acids, carbon fixation pathways in prokaryotes, DNA replication, and terpenoid backbone biosynthesis, and decreased the function of microbial plant pathogens and animal pathogens. CONCLUSION The combination of P. polymyxa and B. cereus may be a potential biocontrol agent to promote the resistance of ginseng to disease and improve the yield, quality, and pesticide degradation.
Collapse
Affiliation(s)
- Xinyue Li
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Qun Liu
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Nanjing, 2100147, China
| | - Yugang Gao
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China.
| | - Pu Zang
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| | - Tong Zheng
- College of Chinese Medicinal Materials and Laboratory of Medicinal Plant Cultivation and Breeding of National Administration of Traditional Chinese Medicine, Jilin Agricultural University, Changchun, 130118, China
| |
Collapse
|
2
|
Functional Endophytes Regulating Plant Secondary Metabolism: Current Status, Prospects and Applications. Int J Mol Sci 2023; 24:ijms24021153. [PMID: 36674663 PMCID: PMC9867233 DOI: 10.3390/ijms24021153] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Endophytes, which are widely found in host plants and have no harmful effects, are a vital biological resource. Plant endophytes promote plant growth and enhance plants' resistance to diseases, pests, and environmental stresses. In addition, they enhance the synthesis of important secondary metabolites in plants and improve the potential applicability of plants in agriculture, medicine, food, and horticulture. In this review, we summarize the recent progress in understanding the interaction between endophytes and plants and summarize the construction of synthetic microbial communities (SynComs) and metaomics analysis of the interaction between endophytes and plants. The application and development prospects of endophytes in agriculture, medicine, and other industries are also discussed to provide a reference for further study of the interaction between endophytes and plants and further development and utilization of endophytes.
Collapse
|
3
|
Zheng T, Gao Y, Zhang Z, Li X, Zang P, Zhao Y, He Z. A study on the anti-skin tumor and anti-UVB damage effects of Gastrodia elata Bl. Products transformed by Armillaria mellea. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2120853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Tong Zheng
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yugang Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhilong Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - XinYue Li
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Pu Zang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun, People’s Republic of China
| |
Collapse
|
4
|
Li X, Liu J, Zuo TT, Hu Y, Li Z, Wang HD, Xu XY, Yang WZ, Guo DA. Advances and challenges in ginseng research from 2011 to 2020: the phytochemistry, quality control, metabolism, and biosynthesis. Nat Prod Rep 2022; 39:875-909. [PMID: 35128553 DOI: 10.1039/d1np00071c] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.
Collapse
Affiliation(s)
- Xue Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Jie Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Tian-Tian Zuo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Ying Hu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Zheng Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Jinghai, Tianjin 301617, China
| | - Hong-da Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Xiao-Yan Xu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - Wen-Zhi Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China.
| | - De-An Guo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin Key Laboratory of TCM Chemistry and Analysis, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, Jinghai, Tianjin 301617, China. .,Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Laboratory for TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| |
Collapse
|
5
|
Yao L, Wang J, He J, Huang L, Gao W. Endophytes, biotransforming microorganisms, and engineering microbial factories for triterpenoid saponins production. Crit Rev Biotechnol 2021; 41:249-272. [PMID: 33472430 DOI: 10.1080/07388551.2020.1869691] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Triterpenoid saponins are structurally diverse secondary metabolites. They are the main active ingredient of many medicinal plants and have a wide range of pharmacological effects. Traditional production of triterpenoid saponins, directly extracted from cultivated plants, cannot meet the rapidly growing demand of pharmaceutical industry. Microorganisms with triterpenoid saponins production ability (especially Agrobacterium genus) and biotransformation ability, such as fungal species in Armillaria and Aspergillus genera and bacterial species in Bacillus and Intestinal microflora, represent a valuable source of active metabolites. With the development of synthetic biology, engineering microorganisms acquired more potential in terms of triterpenoid saponins production. This review focusses on potential mechanisms and the high yield strategies of microorganisms with inherent production or biotransformation ability of triterpenoid saponins. Advances in the engineering of microorganisms, such as Saccharomyces cerevisiae, Yarrowia lipolytica, and Escherichia coli, for the biosynthesis triterpenoid saponins de novo have also been reported. Strategies to increase the yield of triterpenoid saponins in engineering microorganisms are summarized following four aspects, that is, introduction of high efficient gene, optimization of enzyme activity, enhancement of metabolic flux to target compounds, and optimization of fermentation conditions. Furthermore, the challenges and future directions for improving the yield of triterpenoid saponins biosynthesis in engineering microorganisms are discussed.
Collapse
Affiliation(s)
- Lu Yao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Juan Wang
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Junping He
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| | - Luqi Huang
- National Resource Center for Chinese Meteria Medica, China Academy of Chinese Medical Sciences, Beijing China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery and High Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Zhang X, Gao Y, Zang P, Zhao Y, Zhu H, He Z. Effects of four new processing technologies on pesticide residues and saponins content in ginseng. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xue Zhang
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Yugang Gao
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Pu Zang
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Yan Zhao
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Hongyan Zhu
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| | - Zhongmei He
- College of Traditional Chinese Medicine Jilin Agricultural University Chang Chun China
| |
Collapse
|
7
|
Zhang X, Gao Y, Zang P, Zhao Y, He Z, Zhu H, Song S, Zhang L. Study on the simultaneous degradation of five pesticides by Paenibacillus polymyxa from Panax ginseng and the characteristics of their products. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:415-422. [PMID: 30399540 DOI: 10.1016/j.ecoenv.2018.10.093] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/17/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
The quality and safety of ginseng products were seriously affected due to the slow metabolism and long-term residual pesticides in ginseng. Microbial degradation is an effective method to degrade pesticide residues. In this study, ginseng endophytic Paenibacillus polymyxa was used to degrade pesticide residues. A method of simultaneous determination of fluazinam, BHC, PCNB, chlorpyrifos and DDT in ginseng roots and ginseng stems and leaves by GC was established. The sample was extracted with n-hexane and purified by Florisil solid phase extraction column. The limit of quantitation was 0.01 μg mL-1, the linear relationship was good (r ≥ 0.9901). 7 days after inoculated with P. polymyxa, the degradation rates of fluazinam, BHC, PCNB, chlorpyrifos, and DDT in the medium were 94.77%, 70.34%, 77.92%, 78.30%, 66.70%, respectively (P < 0.05). The safety of 5 pesticide degradation products was investigated by GC-MS. The results showed that after 7 days degradation, the main degradation products were alkanes, which are non-toxic and can't cause secondary pollution to the environment. The actual degradation results were verified by field experiments. The results indicated that after sprayed 5 times with P. polymyxa, the degradation rates of fluazinam, BHC, PCNB, chlorpyrifos and DDT in the ginseng roots were 66.07%, 46.24%, 21.05%, 72.40%, 54.21%, respectively (P < 0.05). The degradation rates in ginseng stems and leaves were 74.18%, 55.61%, 73.65%, 58.13%, 46.91%, respectively (P < 0.05). The results indicated that Paenibacillus polymyxa was an effective degradation strain of 5 pesticides.
Collapse
Affiliation(s)
- Xue Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China.
| | - Yugang Gao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China.
| | - Pu Zang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China
| | - Yan Zhao
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China
| | - Zhongmei He
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China
| | - Hongyan Zhu
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China
| | - Shengnan Song
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China
| | - Lianxue Zhang
- College of Traditional Chinese Medicine, Jilin Agricultural University, Chang Chun 130118, China
| |
Collapse
|
8
|
Gao Y, Liang J, Xiao R, Zang P, Zhao Y, Zhang L. Effect of four trace elements on Paenibacillus polymyxa Pp-7250 proliferation, activity and colonization in ginseng. AMB Express 2018; 8:164. [PMID: 30311028 PMCID: PMC6182021 DOI: 10.1186/s13568-018-0694-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/30/2018] [Indexed: 01/04/2023] Open
Abstract
Trace elements are essential nutrients for the growth of microorganisms and play an important role in their proliferation. Hence, the purpose of this paper is to explore the optimal C and N sources for large-scale culture of Paenibacillus polymyxa, and to screen trace elements that can promote their proliferation and improve the activity. First, the concentration of Paenibacillus polymyxa Pp-7250, the number of spores were used as evaluation index. It was found that the four trace elements Cu2+, Fe2+, Mn2+, and Zn2+ could promote the proliferation of Paenibacillus polymyxa at their optimal concentrations. Next, when using wheat starch as carbon source and soybean meal as nitrogen source, it was most suitable for large-scale culture. Finally, field experiments were carried out, and it was discovered that the combination of four trace elements plus the wheat soybean meal group could significantly improve the disease prevention, growth promotion ability of Pp-7250 and its colonization in ginseng. Moreover, the ability of Pp-7250 to transform ginseng roots and leaf saponins were also significantly improved. The group also affected the rhizosphere bacterial community of ginseng and the number showed a significant promotion or inhibition.
Collapse
Affiliation(s)
- Yugang Gao
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Jing Liang
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Ruxue Xiao
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Pu Zang
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Yan Zhao
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| | - Lianxue Zhang
- College of Traditional Chinese Medicine Materials, Jilin Agricultural University, Changchun, 130118 China
| |
Collapse
|
9
|
Gao Y, Liu J, Ji Q, Zhao Y, Zang P, He Z, Zhu H, Zhang L. Anti-tumor activity and related mechanism study of Bacillus Polymyxa transformed Panax ginseng C. A. Mey. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|