1
|
Ding YR, Wang MM, Munipalle K, Xia W, Xu Q, Shen C, Zhou T. Improved exopolysaccharide production by Lactiplantibacillus plantarum Z-1 under hydrogen peroxide stress and its physicochemical properties. Int J Biol Macromol 2024; 282:137215. [PMID: 39515734 DOI: 10.1016/j.ijbiomac.2024.137215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
In this study, a strain with good exopolysaccharide (EPS)-producing ability was isolated from the fermented Benincasa hispida and identified as Lactiplantibacillus plantarum Z-1. Its EPS production was further improved by H2O2 stress under optimized culture conditions, increasing from 180 ± 0.45 mg/L to 409.52 ± 2.16 mg/L. Purification of EPS with DEAE-52 and subsequent Sephadex G-100 column chromatography provided three fractions, namely, EPS-0, EPS-1 and EPS-3, respectively. The molecular weight of EPS, EPS-0, EPS-1 and EPS-3 were 85.4, 25.7, 131.88 and 93.2 kDa, respectively. EPS, EPS-1 and EPS-3 were mainly composed of glucose, rhamnose, arabinose and galactose with molar ratios of 1:0.544:0.211:0.281, 1:1.279:0.807:0.704, and 1:1.459:0.759:0.75, respectively, along with small proportions of fucose, mannose and xylose. EPS-0 was composed of glucose, arabinose, galactose and xylose, with molar ratios of 1:0.618:0.206:0.275. The structural analysis indicated that EPS-3 was mainly consisted of (1,2,4)-β-Rhap, (1,2,3)-β-Araf, (1,4)-β-Galp, T-α-Glcp units. The three purified fractions showed typical characteristics of non-Newtonian fluids and good viscoelasticity. Congo red test revealed that irregular triple-helical conformation existed in EPS and EPS-3. These physicochemical properties of EPSs make them a potential candidate for the use as a health-beneficial food additive in the food processing industry.
Collapse
Affiliation(s)
- Ya-Rui Ding
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Miao-Miao Wang
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Kiran Munipalle
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Wei Xia
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Qiong Xu
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China
| | - Chao Shen
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, Zhejiang 310015, PR China.
| | - Tao Zhou
- Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Xiasha, Hangzhou, Zhejiang 310018, PR China.
| |
Collapse
|
2
|
Sharma P, Sharma A, Lee HJ. Antioxidant potential of exopolysaccharides from lactic acid bacteria: A comprehensive review. Int J Biol Macromol 2024; 281:135536. [PMID: 39349319 DOI: 10.1016/j.ijbiomac.2024.135536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/23/2024] [Accepted: 09/09/2024] [Indexed: 10/02/2024]
Abstract
Exopolysaccharides (EPSs) from lactic acid bacteria (LAB) have multifunctional capabilities owing to their diverse structural conformations, monosaccharide compositions, functional groups, and molecular weights. A review paper on EPS production and antioxidant potential of different LAB genera has not been thoroughly reviewed. Therefore, the current review provides comprehensive information on the biosynthesis of EPSs, including the isolation source, type, characterization techniques, and application, with a primary focus on their antioxidant potential. According to this review, 17 species of Lactobacillus, five species of Bifidobacterium, four species of Leuconostoc, three species of Weissella, Enterococcus, and Lactococcus, two species of Pediococcus, and one Streptococcus species have been documented to exhibit antioxidant activity. Of the 111 studies comprehensively reviewed, 98 evaluated the radical scavenging activity of EPSs through chemical-based assays, whereas the remaining studies documented the antioxidant activity using cell and animal models. Studies have shown that different LAB genera have a unique capacity to produce homo- (HoPs) and heteropolysaccharides (HePs), with varied carbohydrate compositions, linkages, and molecular weights. Leuconostoc, Weissella, and Pediococcus were the main HoPs producers, whereas the remaining genera were the main HePs producers. Recent trends in EPSs production and blending to improve their properties have also been discussed.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Anshul Sharma
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea.
| | - Hae-Jeung Lee
- Department of Food and Nutrition, College of Bionanotechnology, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Institute for Aging and Clinical Nutrition Research, Gachon University, Seongnam-si 13120, Gyeonggi-do, Republic of Korea; Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea.
| |
Collapse
|
3
|
Inanan T, Önal Darilmaz D, Karaduman Yeşildal T, Yüksekdağ Z, Yavuz S. Structural characteristics of Lacticaseibacillus rhamnosus ACS5 exopolysaccharide in association with its antioxidant and antidiabetic activity in vitro. Int J Biol Macromol 2024; 280:136148. [PMID: 39357712 DOI: 10.1016/j.ijbiomac.2024.136148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
A novel structure of exopolysaccharide from the Lactic Acid Bacteria (LAB) Lacticaseibacillus rhamnosus ACS5, isolated from home-made Turkish cheese, is described. After lyophilization, the L-EPS-ACS5 was characterized in production and functional activities in vitro, including antioxidant and antidiabetic activities. The physicochemical characterizations of the L-EPS-ACS5 were determined through molecular weight, UV, FTIR, SEM, TGA, HPLC, NMR, methylation, and GC-MS analysis. Strong antioxidant activities of L-EPS-ACS5 were confirmed from the results obtained in the hydroxyl radical, DPPH, ABTS, FRAP, superoxide anion radical, total antioxidant activity, and DNA damage protective effect, and also the L-EPS-ACS5 exhibited high antidiabetic activity (60 %). This study isolated L-EPS-ACS5 from a home-made cheese L. rhamnosus strain, demonstrating its novel and enhanced functionalities compared to existing strains. This opens exciting avenues for its development in the fields of biomedicine and pharmaceuticals.
Collapse
Affiliation(s)
- Tülden Inanan
- Technical Vocational School, Department of Chemistry and Chemical Processing Technology, Aksaray University, Aksaray 68100, Turkey
| | - Derya Önal Darilmaz
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey.
| | - Tuğçe Karaduman Yeşildal
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Aksaray University, Aksaray 68100, Turkey
| | - Zehranur Yüksekdağ
- Department of Biology, Faculty of Science, Gazi University, Ankara 06500, Turkey.
| | - Serkan Yavuz
- Department of Chemistry, Faculty of Science, Gazi University, Ankara 06500, Turkey.
| |
Collapse
|
4
|
Wu J, Wu Z, Pan Y, Luo D, Zhong Q. Effects of different stress conditions on the production, bioactivities, physicochemical and structural characteristics of exopolysaccharides synthetized by Schleiferilactobacillus harbinensis Z171. Int J Biol Macromol 2024; 257:128675. [PMID: 38092104 DOI: 10.1016/j.ijbiomac.2023.128675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
This study systematically investigated the effects of stress conditions including temperature, pH, H2O2, NaCl, antibiotics on the production and in vitro cholesterol-lowering activity of the exopolysaccharide (EPS) synthetized by Schleiferilactobacillus harbinensis Z171. Additionally, the influences of the optimal stress condition combined with different carbon sources on EPS production were examined, shedding light on the structural characteristics, physicochemical properties and bioactivities of EPSs. The results demonstrated that the EPS produced under H2O2 stress was optimal and presented excellent resistance to simulated gastric juice and α-amylase. Three main fractions, denoted as G-EPS1, F-EPS1 and S-EPS1, were isolated by cellulose DEAE-52 chromatography from crude EPSs synthetized using glucose, fructose and sucrose as carbon sources, respectively. Among them, F-EPS1 possessed the highest cholesterol-lowering, antioxidant and hypoglycemic activities, with the highest molecular weight 91.03 kDa, largest particle size 40.14 nm and apparent viscosity 288.2 mPa·s. Three EPSs exhibited irregular sheet-like and granular structures with good thermal stability. Structural characterization of F-EPS1a (a purified fraction from F-EPS1) revealed that it was a mannan mainly composed of →2)-α-D-Manp-(1→, →3)-α-Manp-(1→ and →2,6)-α-D-Manp-(1→ with branch chains containing α-D-Manp-(1→. F-EPS1a has more potential to be a natural cholesterol-lowering, hypoglycemic and antioxidant supplements in the food industry.
Collapse
Affiliation(s)
- Jinsong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China; Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou 450001, China
| | - Ziyi Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Yirui Pan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China
| | - Dongsheng Luo
- College of Tobacco Science, Henan Agricultural University, Henan, Zhengzhou 450001, China.
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Chen L, Liu R, Li S, Wu M, Yu H, Ge Q. Metabolism of hydrogen peroxide by Lactobacillus plantarum NJAU-01: A proteomics study. Food Microbiol 2023; 112:104246. [PMID: 36906310 DOI: 10.1016/j.fm.2023.104246] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/08/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
This study aimed to investigate the time-course effect of Lactobacillus plantarum NJAU-01 in scavenging exogenous hydrogen peroxide (H2O2). The results showed that L. plantarum NJAU-01 at 107 CFU/mL was able to eliminate a maximum of 4 mM H2O2 within a prolonged lag phase and resume to proliferate during the following culture. Redox state in the start-lag phase (0 h, without the addition of H2O2), indicated by glutathione and protein sulfhydryl, was impaired in the lag phase (3 h and 12 h) and then gradually recovered during subsequent growing stages (20 h and 30 h). By using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and proteomics analysis, a total of 163 proteins such as PhoP family transcriptional regulator, glutamine synthetase, peptide methionine sulfoxide reductase, thioredoxin reductase, ribosomal proteins, acetolactate synthase, ATP binding subunit ClpX, phosphoglycerate kinase, UvrABC system protein A and UvrABC system protein B were identified as differential proteins across the entire growth phase. Those proteins were mainly involved in H2O2 sensing, protein synthesis, repairing proteins and DNA lesions, amino sugar and nucleotide sugar metabolism. Our data suggest that biomolecules of L. plantarum NJAU-01 are oxidized to passively consume H2O2 and are restored by the enhanced protein and/or gene repair systems.
Collapse
Affiliation(s)
- Lei Chen
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Rui Liu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China.
| | - Suyun Li
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Mangang Wu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Hai Yu
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China
| | - Qingfeng Ge
- College of Food Science and Engineering, Yangzhou University, Industrial Engineering Center for Huaiyang Cuisine of Jiangsu Province, Yangzhou, 225127, China.
| |
Collapse
|
6
|
Nicolescu CM, Bumbac M, Buruleanu CL, Popescu EC, Stanescu SG, Georgescu AA, Toma SM. Biopolymers Produced by Lactic Acid Bacteria: Characterization and Food Application. Polymers (Basel) 2023; 15:1539. [PMID: 36987319 PMCID: PMC10058920 DOI: 10.3390/polym15061539] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/13/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Plants, animals, bacteria, and food waste are subjects of intensive research, as they are biological sources for the production of biopolymers. The topic links to global challenges related to the extended life cycle of products, and circular economy objectives. A severe and well-known threat to the environment, the non-biodegradability of plastics obliges different stakeholders to find legislative and technical solutions for producing valuable polymers which are biodegradable and also exhibit better characteristics for packaging products. Microorganisms are recognized nowadays as exciting sources for the production of biopolymers with applications in the food industry, package production, and several other fields. Ubiquitous organisms, lactic acid bacteria (LAB) are well studied for the production of exopolysaccharides (EPS), but much less as producers of polylactic acid (PLA) and polyhydroxyalkanoates (PHAs). Based on their good biodegradability feature, as well as the possibility to be obtained from cheap biomass, PLA and PHAs polymers currently receive increased attention from both research and industry. The present review aims to provide an overview of LAB strains' characteristics that render them candidates for the biosynthesis of EPS, PLA, and PHAs, respectively. Further, the biopolymers' features are described in correlation with their application in different food industry fields and for food packaging. Having in view that the production costs of the polymers constitute their major drawback, alternative solutions of biosynthesis in economic terms are discussed.
Collapse
Affiliation(s)
- Cristina Mihaela Nicolescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Marius Bumbac
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
- Faculty of Sciences and Arts, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Claudia Lavinia Buruleanu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Elena Corina Popescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Sorina Geanina Stanescu
- Institute of Multidisciplinary Research for Science and Technology, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Andreea Antonia Georgescu
- Faculty of Environmental Engineering and Food Science, Valahia University of Targoviste, 130004 Targoviste, Romania
| | - Siramona Maria Toma
- Doctoral School of University of Medicine and Pharmacy “Carol Davila” Bucharest, 050474 Bucharest, Romania
| |
Collapse
|
7
|
Tseng YC, Xue C, Ng IS. Symbiosis culture of probiotic Escherichia coli Nissle 1917 and Lactobacillus rhamnosus GG using lactate utilization protein YkgG. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Kowalczyk M, Znamirowska-Piotrowska A, Buniowska-Olejnik M, Pawlos M. Sheep Milk Symbiotic Ice Cream: Effect of Inulin and Apple Fiber on the Survival of Five Probiotic Bacterial Strains during Simulated In Vitro Digestion Conditions. Nutrients 2022; 14:nu14214454. [PMID: 36364717 PMCID: PMC9655080 DOI: 10.3390/nu14214454] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/17/2022] [Accepted: 10/20/2022] [Indexed: 01/24/2023] Open
Abstract
We conducted a study to determine the survival of bacterial cells under in vitro digestion. For this purpose, ice cream mixes were prepared: control, with 4% inulin, 2.5% inulin and 1.5% apple fiber and 4% apple fiber. Each inoculum (pH = 4.60 ± 0.05), containing 9 log cfu g-1 bacteria, at 5% (w/w) was added to the ice cream mixes (Lacticaseibacilluscasei 431, Lactobacillus acidophilus LA-5, Lacticaseibacillus paracasei L-26, Lacticaseibacillusrhamnosus, Bifidobacterium animalis ssp. lactis BB-12) and fermentation was carried out to pH 4.60 ± 0.05. The in vitro digestion method simulated the stages of digestion that occur in the mouth, stomach and small intestine under optimal controlled conditions (pH value, time and temperature). At each stage of digestion, the survival rate of probiotic bacteria was determined using the plate-deep method. As expected, in the oral stage, there was no significant reduction in the viability of the probiotic bacteria in any ice cream group compared to their content before digestion. In the stomach stage, Bifidobacterium animalis ssp. lactis BB-12 strain had the highest viable counts (8.48 log cfu g-1) among the control samples. Furthermore, a 4% addition of inulin to ice cream with Bifidobacterium BB-12 increased gastric juice tolerance and limited strain reduction by only 16.7% compared to the number of bacterial cells before digestion. Regarding ice cream samples with Bifidobacterium BB-12, replacing part of the inulin with apple fiber resulted in increased survival at the stomach stage and a low reduction in the bacterial population of only 15.6% compared to samples before digestion. At the stomach stage, the positive effect of the addition of inulin and apple fiber was also demonstrated for ice cream samples with Lacticaseibacilluscasei 431 (9.47 log cfu g-1), Lactobacillus acidophilus LA-5 (8.06 log cfu g-1) and Lacticaseibacillus paracasei L-26 (5.79 log cfu g-1). This study showed the highest sensitivity to simulated gastric stress for ice cream samples with Lacticaseibacillusrhamnosus (4.54 log cfu g-1). Our study confirmed that the 4% addition of inulin to ice cream increases the survival rate of L. casei and Bifidobacterium BB-12 in simulated intestinal juice with bile by 0.87 and 2.26 log cfu g-1, respectively. The highest viable count in the small intestine stage was observed in ice cream with L. acidophilus. The addition of inulin increased the survival of L. rhamnosus by 10.8% and Bifidobacterium BB-12 by about 22% under conditions of simulated in vitro digestion compared to their control samples. The survival rates of L. casei and L. paracasei were also highly affected by the 4% addition of apple fiber, where the increase under gastrointestinal passage conditions was determined to range from 7.86-11.26% compared to their control counterparts. In comparison, the lowest survival rate was found in the control ice cream with L. rhamnosus (47.40%). In our study at the intestinal stage, only five ice cream groups: a sample with 4% inulin and L. acidophilus, a control sample with Bifidobacterium BB12, a sample with 2.5% inulin and 1.5% apple fiber with Bifidobacterium BB12, a control sample with L. rhamnosus, a sample with 4% fiber and L. rhamnosus reported bacterial cell counts below 6 log cfu g-1 but higher than 5 log cfu g-1. However, in the remaining ice cream groups, viable counts of bacterial cells ranged from 6.11 to 8.88 log cfu g-1, ensuring a therapeutic effect. Studies have clearly indicated that sheep milk ice cream could provide a suitable matrix for the delivery of probiotics and prebiotics and contribute to intestinal homeostasis. The obtained results have an applicative character and may play an essential role in developing new functional sheep milk ice cream.
Collapse
|
9
|
Sørensen HM, Rochfort KD, Maye S, MacLeod G, Brabazon D, Loscher C, Freeland B. Exopolysaccharides of Lactic Acid Bacteria: Production, Purification and Health Benefits towards Functional Food. Nutrients 2022; 14:2938. [PMID: 35889895 PMCID: PMC9319976 DOI: 10.3390/nu14142938] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are capable of synthesising metabolites known as exopolysaccharides (EPS) during fermentation. Traditionally, EPS plays an important role in fermented dairy products through their gelling and thickening properties, but they can also be beneficial to human health. This bioactivity has gained attention in applications for functional foods, which leads them to have prebiotic, immunomodulatory, antioxidant, anti-tumour, cholesterol-lowering and anti-obesity activity. Understanding the parameters and conditions is crucial to optimising the EPS yields from LAB for applications in the food industry. This review provides an overview of the functional food market together with the biosynthesis of EPS. Factors influencing the production of EPS as well as methods for isolation, characterisation and quantification are reviewed. Finally, the health benefits associated with EPS are discussed.
Collapse
Affiliation(s)
- Helena Mylise Sørensen
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Keith D. Rochfort
- School of Nursing, Psychotherapy and Community Health, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Susan Maye
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - George MacLeod
- Dairygold Co-Operative Society Limited, Clonmel Road, Co. Cork, P67 DD36 Mitchelstown, Ireland; (S.M.); (G.M.)
| | - Dermot Brabazon
- I-Form, Advanced Manufacturing Research Centre, Dublin City University, D09 DX63 Dublin, Ireland;
| | - Christine Loscher
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| | - Brian Freeland
- School of Biotechnology, Dublin City University, D09 DX63 Dublin, Ireland; (C.L.); (B.F.)
| |
Collapse
|
10
|
Teng CS, Xue C, Lin JY, Ng IS. Towards high-level protein, beta-carotene, and lutein production from Chlorella sorokiniana using aminobutyric acid and pseudo seawater. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Wu J, Han X, Ye M, Li Y, Wang X, Zhong Q. Exopolysaccharides synthesized by lactic acid bacteria: biosynthesis pathway, structure-function relationship, structural modification and applicability. Crit Rev Food Sci Nutr 2022; 63:7043-7064. [PMID: 35213280 DOI: 10.1080/10408398.2022.2043822] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Probiotics and their fermentation products are increasingly been focused on due to their health-boosting effects. Exopolysaccharides (EPS) synthetized by lactic acid bacteria (LAB) are widely applied as texture modifiers in dairy, meat and bakery products owning to their improved properties. Moreover, LAB-derived EPS have been confirmed to possess diverse physiological bioactivities including antioxidant, anti-biofilm, antiviral, immune-regulatory or antitumor. However, the low production and high acquisition cost hinder their development. Even though LAB-derived EPS have been extensively studied for their production-improving, there are only few reports on the systematic elucidation and summary of the relationship among biosynthesis pathway, strain selection, production parameter, structure-function relationship. Therefore, a detailed summary on biosynthesis pathway, production parameter and structure-function relationship of LAB-derived EPS is provided in this review, the structural modifications together with the current and potential applications are also discussed in this paper.
Collapse
Affiliation(s)
- Jinsong Wu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Xiangpeng Han
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Meizhi Ye
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yao Li
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xi Wang
- Department of Science, Henan University of Animal Husbandry and Economy, Henan, Zhengzhou, China
| | - Qingping Zhong
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Zhang Y, Chen X, Hu P, Liao Q, Luo Y, Li J, Feng D, Zhang J, Wu Z, Xu H. Extraction, purification, and antioxidant activity of exopolysaccharides produced by Lactobacillus kimchi SR8 from sour meat in vitro and in vivo. CYTA - JOURNAL OF FOOD 2021. [DOI: 10.1080/19476337.2021.1883117] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yulong Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Xueying Chen
- Yunyan District Center for Animal Disease Control, Guiyang, Guizhou, China
| | - Ping Hu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Qianwei Liao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Yong Luo
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Juan Li
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Dandan Feng
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Jun Zhang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Zhaoqing Wu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Haoxiang Xu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
13
|
Jiang Y, Zhang M, Zhang Y, Zulewska J, Yang Z. Calcium (Ca 2+)-regulated exopolysaccharide biosynthesis in probiotic Lactobacillus plantarum K25 as analyzed by an omics approach. J Dairy Sci 2021; 104:2693-2708. [PMID: 33455763 DOI: 10.3168/jds.2020-19237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 01/21/2023]
Abstract
Exopolysaccharide (EPS)-producing lactic acid bacteria have been widely used in dairy products, but how calcium, the main metal ion component in milk, regulates the EPS biosynthesis in lactic acid bacteria is not clear. In this study, the effect of Ca2+ on the biosynthesis of EPS in the probiotic Lactobacillus plantarum K25 was studied. The results showed that addition of CaCl2 at 20 mg/L in a semi-defined medium did not affect the growth of strain K25, but it increased the EPS yield and changed the microstructure of the polymer. The presence of Ca2+ also changed the monosaccharide composition of the EPS with decreased high molecular weight components and more content of rhamnose, though the functional groups of the polymer were not altered as revealed by Fourier transform infrared spectral analysis. These were further confirmed by analysis of the mRNA expression of cps genes, 9 of which were upregulated by Ca2+, including cps4F and rfbD associated with EPS biosynthesis with rhamnose. Proteomics analysis showed that Ca2+ upregulated most of the proteins related to carbon transport and metabolism, fatty acid synthesis, amino acid synthesis, ion transport, UMP synthesis. Specially, the increased expression of MelB, PtlIIBC, EIIABC, PtlIIC, PtlIID, Bgl, GH1, MalFGK, DhaK, and FBPase provided substrates for the EPS synthesis. Meanwhile, metabolomics analysis revealed significant change of the small molecular metabolites in tricarboxylic acid cycle, glucose metabolism and propionic acid metabolism. Among them the content of active small molecules such as polygalitol, lyxose, and 5-phosphate ribose increased, facilitating the EPS biosynthesis. Furthermore, Ca2+ activated HipB signaling pathway to inhibit the expression of manipulator repressor such as ArsR, LytR/AlgR, IscR, and RafR, and activated the expression of GntR to regulate the EPS synthesis genes. This study provides a basis for understanding the overall change of metabolic pathways related to the EPS biosynthesis in L. plantarum K25 in response to Ca2+, facilitating exploitation of its EPS-producing potential for application in probiotic dairy products.
Collapse
Affiliation(s)
- Yunyun Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048; Mengniu Gaoke Dairy (Beijing) Co. Ltd., Beijing, P.R. China 101100
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048
| | - Yang Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China 550001
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048.
| |
Collapse
|
14
|
Effects of GSM 1800 band radiation on composition, structure and bioactivity of exopolysaccharides produced by yoghurt starter cultures. Arch Microbiol 2021; 203:1697-1706. [PMID: 33459814 DOI: 10.1007/s00203-020-02168-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/18/2020] [Accepted: 12/27/2020] [Indexed: 10/22/2022]
Abstract
In this study, the effects of GSM 1800 band radiation on composition, structure and bioactivity of exopolysaccharides (EPSs) produced by Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus were determined. For this, GSM 1800 band radiation was applied to both cultures and characteristics of EPSs extracted from the control groups (K) and the radiation stressed groups (R) were determined. An alteration in the chemical composition of the EPSs was observed and EPS production levels and molecular weights of the EPSs increased following the GSM 1800 band radiation application. Alterations in the functional groups, thermal and morphological characteristics of EPSs following the GSM 1800 band radiation application were confirmed by FTIR, TGA and SEM analysis, respectively. Importantly no alterations in the antioxidant and antibacterial activity of the EPSs were observed following the radiation application. These results suggested the effects of the GSM radiation on final characteristics of EPSs from yogurt starter cultures.
Collapse
|
15
|
Lactic Acid Bacterial Production of Exopolysaccharides from Fruit and Vegetables and Associated Benefits. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6040115] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Microbial polysaccharides have interesting and attractive characteristics for the food industry, especially when produced by food grade bacteria. Polysaccharides produced by lactic acid bacteria (LAB) during fermentation are extracellular macromolecules of either homo or hetero polysaccharidic nature, and can be classified according to their chemical composition and structure. The most prominent exopolysaccharide (EPS) producing lactic acid bacteria are Lactobacillus, Leuconostoc, Weissella, Lactococcus, Streptococcus, Pediococcus and Bifidobacterium sp. The EPS biosynthesis and regulation pathways are under the dependence of numerous factors as producing-species or strain, nutrient availability, and environmental conditions, resulting in varied carbohydrate compositions and beneficial properties. The interest is growing for fruits and vegetables fermented products, as new functional foods, and the present review is focused on exploring the EPS that could derive from lactic fermented fruit and vegetables. The chemical composition, biosynthetic pathways of EPS and their regulation mode is reported. The consequences of EPS on food quality, especially texture, are explored in relation to producing species. Attention is given to the scientific investigations on health benefits attributed to EPS such as prebiotic, antioxidant, anti-inflammatory and cholesterol lowering activities.
Collapse
|
16
|
Effect of manganese sulfate and vitamin B12 on the properties of physicochemical, textural, sensory and bacterial growth of set yogurt. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00720-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
17
|
Minj J, Chandra P, Paul C, Sharma RK. Bio-functional properties of probiotic Lactobacillus: current applications and research perspectives. Crit Rev Food Sci Nutr 2020; 61:2207-2224. [PMID: 32519883 DOI: 10.1080/10408398.2020.1774496] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Lactic acid bacteria as a starter culture are very important component in the fermentation process of dairy and food industry. Application of lactic acid bacteria as probiotic bacteria adds more functionality to the developed product. Gut colonizing bacteria have attractive benefits related to human health. Bio-functional properties such as antimicrobial activity, anti-inflammatory, ACE-inhibitory, antioxidant, antidiarrheal, antiviral, immunomodulatory, hypocholesterolemic, anti-diabetic and anti-cancer activities are the most applicable research areas of lactic acid bacteria. Different strains of Lactobacillus are generally consumed as probiotics and colonize the gastrointestinal tract. Sometimes these bacteria may possess antimicrobial activity and may positively influence the effect of antibiotics. Use of Lactobacillus spp. for the development of functional foods is one of the promising areas of current research and applications. Individual bacterial species have unique biological activity, which may vary from strains to strains and identification of this uniqueness could be helpful in the development of functional and therapeutic food products.
Collapse
Affiliation(s)
- Jagrani Minj
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | | | - Catherine Paul
- Department of Food Science and Technology, Nebraska Innovation Campus (NIC), University of Nebraska, Lincoln, Nebraska, USA
| | - Rakesh Kumar Sharma
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| |
Collapse
|
18
|
Xu Y, Cui Y, Yue F, Liu L, Shan Y, Liu B, Zhou Y, Lü X. Exopolysaccharides produced by lactic acid bacteria and Bifidobacteria: Structures, physiochemical functions and applications in the food industry. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2019.03.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
19
|
Yu YJ, Chen Z, Chen PT, Ng IS. Production, characterization and antibacterial activity of exopolysaccharide from a newly isolated Weissella cibaria under sucrose effect. J Biosci Bioeng 2018; 126:769-777. [PMID: 30042003 DOI: 10.1016/j.jbiosc.2018.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 05/07/2018] [Accepted: 05/31/2018] [Indexed: 11/27/2022]
Abstract
Weissella cibaria 27 (W27) is a new lactic acid bacterium which has been screened from kimchi, and is important in diary fermentation. This is first-attempt to understand the effects of sucrose and achieve the highest exopolysaccharide (EPS) productivity from W27. The metabolic compounds of lactic acid, acetic acid and ethanol are at similar levels when the cultures with glucose or lactose; except for EPS is significantly increased up to 24.8 g/L with 60 g/L of sucrose. Scanning electron microscopy (SEM) results reveal cell length changing shorter after sucrose addition. By Taguchi's approach, an L9 orthogonal array was adopted to evaluate the effects of culture were ranked according to the EPS production as temperature > time > initial pH, in which optimal conditions were at 22°C and pH 6.2 for 24 h. The major composition of EPS is dextran of α-1,6 glycosidic linkage with molecular weight of 1.2 x 107 Da by nuclear magnetic resonance (NMR) and high-performance size-exclusion chromatography (HPSEC) analysis. The surface property of W27 induced by sucrose is become more hydrophobic to better inhibit bacteria. The simple cultural approach for this new dextran producing strain, W27, has potential in the food, feed, antibacterial agent, and cosmetic industry.
Collapse
Affiliation(s)
- You-Jin Yu
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan
| | - Zhiyang Chen
- Department of Chemical and Biochemical Engineering, Xiamen University, Xiamen 361005, China
| | - Po Ting Chen
- Department of Biotechnology, Southern Taiwan University of Science Technology, Tainan 71005, Taiwan
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 70101, Taiwan.
| |
Collapse
|
20
|
Lactobacillus rhamnosus ATCC 7469 exopolysaccharides synergizes with low level ionizing radiation to modulate signaling molecular targets in colorectal carcinogenesis in rats. Biomed Pharmacother 2017; 92:384-393. [PMID: 28554134 DOI: 10.1016/j.biopha.2017.05.089] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy that targets cellular signaling pathway represents an alternative therapy for the treatment of colon cancer (CRC). The present study was therefore aimed to investigate the probable interaction of Lactobacillus rhamnosus ATCC 7469 exopolysaccharides (EPS) with low level ionizing γ radiation (γ-R) exposure against dimethylhydrazine (DMH)- induced colorectal carcinogenesis in rats. Colon cancer was induced with 20mg DMH/kg BW. Rats received daily by gastric gavage 100mg EPS/Kg BW concomitant with 1Gy γ-R over two months. Colonic oxidative and inflammatory stresses were assessed. The change in the expression of p-p38 MAPK, p-STAT3, β-catenin, NF-kB, COX-2 and iNOS was evaluated by western blotting and q-PCR. It was found that DMH treatment significantly induced colon oxidative injury accompanied by inflammatory disturbance along with increased protein expression of the targeted signaling factors p-p38 MAPK, p-STAT3 and β-catenin. The mRNA gene expression of NF-kB, COX-2 and iNOS was significantly higher in DMH-treated animals. It's worthy to note that colon tissues with DMH treatment showed significant dysplasia and anaplasia of the glandular mucosal lining epithelium with loses of goblet cells formation, pleomorphism in the cells and hyperchromachia in nuclei. Interestingly, EPS treatment with γ-R exposure showed statistically significant amelioration of the oxidative and inflammatory biomarkers with modulated signaling molecular factors accompanied by improved histological structure against DMH-induced CRC. In conclusion, our findings showed that Lactobacillus rhamnosus ATCC 7469 EPS with low level γ-R in synergistic interaction are efficacious control against CRC progression throughout the modulation of key signaling growth factors associated with inflammation via antioxidant mediated anti-inflammatory and anti-proliferative activities.
Collapse
|