1
|
Castillo-Alfonso F, Quintana-Menéndez A, Vigueras-Ramírez G, Sales-Cruz AM, Rosales-Colunga LM, Olivares-Hernández R. Analysis of the Propionate Metabolism in Bacillus subtilis during 3-Indolacetic Production. Microorganisms 2022; 10:microorganisms10122352. [PMID: 36557605 PMCID: PMC9782769 DOI: 10.3390/microorganisms10122352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The genera Bacillus belongs to the group of microorganisms that are known as plant growth-promoting bacteria, their metabolism has evolved to produce molecules that benefit the growth of the plant, and the production of 3-indole acetic acid (IAA) is part of its secondary metabolism. In this work, Bacillus subtilis was cultivated in a bioreactor to produce IAA using propionate and glucose as carbon sources in an M9-modified media; in both cases, tryptophan was added as a co-substrate. The yield of IAA using propionate is 17% higher compared to glucose. After 48 h of cultivation, the final concentration was 310 mg IAA/L using propionate and 230 mg IAA/L using glucose, with a concentration of 500 mg Trp/L. To gain more insight into propionate metabolism and its advantages, the genome-scale metabolic model of B. subtilis (iBSU 1147) and computational analysis were used to calculate flux distribution and evaluate the metabolic capabilities to produce IAA using propionate. The metabolic fluxes demonstrate that propionate uptake favors the production of precursors needed for the synthesis of the hormone, and the sensitivity analysis shows that the control of a specific growth rate has a positive impact on the production of IAA.
Collapse
Affiliation(s)
- Freddy Castillo-Alfonso
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México 05370, Mexico
| | - Alejandro Quintana-Menéndez
- Posgrado en Ciencias Naturales e Ingeniería, Universidad Autónoma Metropolitana Unidad Cuajimalpa, Ciudad de México 05370, Mexico
| | - Gabriel Vigueras-Ramírez
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Alfonso Mauricio Sales-Cruz
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
| | - Luis Manuel Rosales-Colunga
- Facultad de Ingeniería, Universidad Autónoma de San Luis Potosí, Av. Dr Manuel Nava 8, Zona Universitaria, San Luis Potosí 78290, Mexico
| | - Roberto Olivares-Hernández
- Departamento de Procesos y Tecnología, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, Cuajimalpa de Morelos, Ciudad de México 05348, Mexico
- Correspondence:
| |
Collapse
|
2
|
Xu Y, Li Y, Wu Z, Lu Y, Tao G, Zhang L, Ding Z, Shi G. Combining Precursor-Directed Engineering with Modular Designing: An Effective Strategy for De Novo Biosynthesis of l-DOPA in Bacillus licheniformis. ACS Synth Biol 2022; 11:700-712. [PMID: 35076224 DOI: 10.1021/acssynbio.1c00411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
3-Hydroxy-l-tyrosine (l-DOPA) is a promising drug for treating Parkinson's disease. Tyrosine hydroxylase catalyzes the microbial synthesis of l-DOPA, which is hindered by the efficiency of catalysis, the supply of cofactor tetrahydrobiopterin, and the regulation of the pathway. In this study, the modular engineering strategy in Bacillus licheniformis was identified to effectively enhance l-DOPA production. First, the catalytic efficiency of biocatalyst tyrosine hydroxylase from Streptosporangium roseum DSM 43021 (SrTH) was improved by 20.3% by strengthening its affinity toward tetrahydrobiopterin. Second, the tetrahydrobiopterin supply pool was increased by bottleneck gene expression, oxygen transport facilitation, budC (encoding meso-2,3-butanediol dehydrogenase) deletion, and tetrahydrobiopterin regeneration using a native YfkO nitroreductase. The strain 45ABvC successfully produced tetrahydrobiopterin, which was detected as pterin (112.48 mg/L), the oxidation product of tetrahydrobiopterin. Finally, the yield of precursor l-tyrosine reached 148 mg/gDCW, with an increase of 71%, with the deletion of a novel spliced transcript 41sRNA associated with the regulation of the shikimate pathway. The engineered strain 45ABvCS::PD produced 167.14 mg/L (2.41 times of wild-type strain) and 1290 mg/L l-DOPA in a shake flask and a 15 L bioreactor, respectively, using a fermentation strategy on a mixture of carbon sources. This study holds great potential for constructing a microbial source of l-DOPA and its high-value downstream pharmaceuticals.
Collapse
Affiliation(s)
- Yinbiao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Engineering Research Center for Applied Microbiology of Henan Province, School of Life Sciences, Henan University, Kaifeng 475004, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Zhiyong Wu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Yiming Lu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Guanjun Tao
- State Key Laboratory of Food Science and Technology, Synergetic Innovation Center of Food Safety and Nutrition, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Zhongyang Ding
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People’s Republic of China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People’s Republic of China
| |
Collapse
|
3
|
Zhan Y, Shi J, Xiao Y, Zhou F, Wang H, Xu H, Li Z, Yang S, Cai D, Chen S. Multilevel metabolic engineering of Bacillus licheniformis for de novo biosynthesis of 2-phenylethanol. Metab Eng 2022; 70:43-54. [PMID: 35038552 DOI: 10.1016/j.ymben.2022.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/02/2022] [Accepted: 01/12/2022] [Indexed: 01/07/2023]
Abstract
Due to its pleasant rose-like scent, 2-phenylethanol (2-PE) has been widely used in the fields of cosmetics and food. Microbial production of 2-PE offers a natural and sustainable production process. However, the current bioprocesses for de novo production of 2-PE suffer from low titer, yield, and productivity. In this work, a multilevel metabolic engineering strategy was employed for the high-level production of 2-PE. Firstly, the native alcohol dehydrogenase YugJ was identified and characterized for 2-PE production via genome mining and gene function analysis. Subsequently, the redirection of carbon flux into 2-PE biosynthesis by combining optimization of Ehrlich pathway, central metabolic pathway, and phenylpyruvate pathway enabled the production of 2-PE to a titer of 1.81 g/L. Specifically, AroK and AroD were identified as the rate-limiting enzymes of 2-PE production through transcription and metabolite analyses, and overexpression of aroK and aroD efficiently boosted 2-PE synthesis. The precursor competing pathways were blocked by eliminating byproduct formation pathways and modulating the glucose transport system. Under the optimal condition, the engineered strain PE23 produced 6.24 g/L of 2-PE with a yield and productivity of 0.14 g/g glucose and 0.13 g/L/h, respectively, using a complex medium in shake flasks. This work achieves the highest titer, yield, and productivity of 2-PE from glucose via the phenylpyruvate pathway. This study provides a promising platform that might be widely useful for improving the production of aromatic-derived chemicals.
Collapse
Affiliation(s)
- Yangyang Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Jiao Shi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Yuan Xiao
- School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Fei Zhou
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Huan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Haixia Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Zhi Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Shihui Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of Life Sciences, Hubei University, Wuhan, 430062, PR China.
| |
Collapse
|
4
|
Xiao J, Peng B, Su Z, Liu A, Hu Y, Nomura CT, Chen S, Wang Q. Facilitating Protein Expression with Portable 5'-UTR Secondary Structures in Bacillus licheniformis. ACS Synth Biol 2020; 9:1051-1058. [PMID: 32302094 DOI: 10.1021/acssynbio.9b00355] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The 5'-untranslated region (5'-UTR) of prokaryotic mRNAs plays an essential role in post-transcriptional regulation. Bacillus species, such as Bacillus subtilis and Bacillus licheniformis, have gained considerable attention as microbial cell factories for the production of various valuable chemicals and industrial proteins. In this work, we developed a portable 5'-UTR sequence for enhanced protein output in the industrial strain B. licheniformis DW2. This sequence contains only ∼30 nt and forms a hairpin structure located right before the open reading frame. The optimized Shine-Dalgarno (SD) sequence was presented as a single strand on the loop of the hairpin for better ribosome recognition and recruitment. By optimizing the free energy of folding, this 5'-element could effectively enhance the expression of eGFP by ∼50-fold and showed good adaptability for other target proteins, including RFP, nattokinase, and keratinase. This 5'-UTR could promote the accessibility of both the SD sequence and start codon, leading to improved efficiency of translation initiation. Furthermore, the hairpin structure protected mRNA against 5'-exonucleases, resulting in enhanced mRNA stability. It is well-known that the stable structure at a ribosome binding site (RBS) impedes initiation in Escherichia coli. In this study, we presented a unique structure at a RBS that can effectively enhance protein production, which is an exception of this prevailing concept. By adjusting a single thermodynamic parameter and holding the other factors affecting protein output constant, a series of 5'-UTR elements with different expression strengths could be rationally designed for wide use in Bacillus sp.
Collapse
Affiliation(s)
- Jun Xiao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Bing Peng
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhaowei Su
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Ankun Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Yajing Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Christopher T. Nomura
- Department of Chemistry, The State University of New York College of Environmental Science and Forestry (SUNY-ESF), Syracuse, New York 13210, United States
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| | - Qin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, Hubei University, Wuhan 430062, PR China
| |
Collapse
|
5
|
Engineering a defined culture medium to grow Piscirickettsia salmonis for its use in vaccine formulations. ACTA ACUST UNITED AC 2020; 47:299-309. [DOI: 10.1007/s10295-020-02265-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/10/2020] [Indexed: 12/18/2022]
Abstract
Abstract
Piscirickettsia salmonis is a facultative Gram-negative intracellular bacterium that produces piscirickettsiosis, disease that causes a high negative impact in salmonid cultures. The so-far-unidentified nutritional requirements have hindered its axenic culture at laboratory and industrial scales for the formulation of vaccines. The present study describes the development of a defined culture medium for P. salmonis. The culture medium was formulated through rational design involving auxotrophy test and statistical designs of experiments, considering the genome-scale metabolic reconstruction of P. salmonis reported by our group. The whole optimization process allowed for a twofold increase in biomass and a reduction of about 50% of the amino acids added to the culture medium. The final culture medium contains twelve amino acids, where glutamic acid, threonine and arginine were the main carbon and energy sources, supporting 1.65 g/L of biomass using 6.5 g/L of amino acids in the formulation. These results will contribute significantly to the development of new operational strategies to culture this bacterium for the production of vaccines.
Collapse
|
6
|
Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis. Appl Microbiol Biotechnol 2019; 104:391-403. [PMID: 31745574 DOI: 10.1007/s00253-019-10230-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
Bacillus licheniformis has been regarded as an outstanding microbial cell factory for the production of biochemicals and enzymes. Due to lack of genetic tools to repress gene expression, metabolic engineering and gene function elucidation are limited in this microbe. In this study, an integrated CRISPR interference (CRISPRi) system was constructed in B. licheniformis. Several endogenous genes, including yvmC, cypX, alsD, pta, ldh, and essential gene rpsC, were severed as the targets to test this CRISPRi system, and the repression efficiencies were ranged from 45.02 to 94.00%. Moreover, the multiple genes were simultaneously repressed with high efficiency using this CRISPRi system. As a case study, the genes involved in by-product synthetic and L-valine degradation pathways were selected as the silence targets to redivert metabolic flux toward L-valine synthesis. Repression of acetolactate decarboxylase (alsD) and leucine dehydrogenase (bcd) led to 90.48% and 80.09 % increases in L-valine titer, respectively. Compared with the control strain DW9i△leuA (1.47 g/L and 1.79 g/L), the L-valine titers of combinatorial strain DW9i△leuA/pHYi-alsD-bcd were increased by 1.27-fold and 2.89-fold, respectively, in flask and bioreactor. Collectively, this work provides a feasible approach for multiplex metabolic engineering and functional genome studies of B. licheniformis.
Collapse
|
7
|
Transcriptional Changes in the Xylose Operon in Bacillus licheniformis and Their Use in Fermentation Optimization. Int J Mol Sci 2019; 20:ijms20184615. [PMID: 31540366 PMCID: PMC6769896 DOI: 10.3390/ijms20184615] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 09/14/2019] [Accepted: 09/16/2019] [Indexed: 12/18/2022] Open
Abstract
The xylose operon is an efficient biological element used for the regulation of gene expression in Bacillus licheniformis. Although the mechanism underlying the xylose-mediated regulation of this operon has been elucidated, the transcriptional changes that occur under various fermentation conditions remain unclear. In this study, the effects of different conditions on xylose operon expression were investigated. Significant upregulation was observed during the transition from the logarithmic phase to the stationary phase (2.5-fold, n = 3, p < 0.01). Glucose suppressed transcription over 168-fold (n = 3, p < 0.01). Meanwhile, the inhibitory effect of glucose hardly strengthened at concentrations from 20 to 180 g/L. Furthermore, the transcription of the xylose operon increased at elevated temperatures (25-42 °C) and was optimal at a neutral pH (pH 6.5-7.0). Based on these findings, relevant fermentation strategies (delaying the induction time, using dextrin as a carbon source, increasing the fermentation temperature, and maintaining a neutral pH) were proposed. Subsequently, these strategies were validated through the use of maltogenic amylase as a reporter protein, as an 8-fold (n = 3, p < 0.01) increase in recombinant enzyme activity compared to that under unoptimized conditions was observed. This work contributes to the development of fermentation optimization and furthers the use of the xylose operon as an efficient expression element.
Collapse
|
8
|
Systematic metabolic pathway modification to boost l-ornithine supply for bacitracin production in Bacillus licheniformis DW2. Appl Microbiol Biotechnol 2019; 103:8383-8392. [DOI: 10.1007/s00253-019-10107-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Revised: 08/07/2019] [Accepted: 08/26/2019] [Indexed: 11/27/2022]
|
9
|
Increased flux through the TCA cycle enhances bacitracin production by Bacillus licheniformis DW2. Appl Microbiol Biotechnol 2018; 102:6935-6946. [PMID: 29911294 DOI: 10.1007/s00253-018-9133-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/07/2018] [Accepted: 05/23/2018] [Indexed: 11/27/2022]
Abstract
The dodecapeptide antibiotic bacitracin, produced by several strains of Bacillus licheniformis and Bacillus subtilis, is widely used as an antibacterial animal feed additive. Several genetic strategies were explored to enhance its production. The availability of building block amino acids for bacitracin production was found to play an important role in its synthesis. In this study, the TCA cycle in the industrial strain B. licheniformis DW2 was strengthened by overexpression of the key enzymes citrate synthase and isocitrate dehydrogenase (ICDH). As the central metabolic pathway, the TCA cycle is a major source for energy supply and intermediates for anabolism. By enhancing flux through the TCA cycle, more energy and precursors were generated for amino acid biosynthesis and uptake, resulting in enlarged intracellular pool of bacitracin-containing amino acids for bacitracin production. This study unveiled the metabolic responses of the increased TCA cycle flux in B. licheniformis and provided a novel strategy for enhancing bacitracin production.
Collapse
|