1
|
Jang WY, Sohn JH, Chang JH. Thermally Stable and Reusable Silica and Nano-Fructosome Encapsulated CalB Enzyme Particles for Rapid Enzymatic Hydrolysis and Acylation. Int J Mol Sci 2023; 24:9838. [PMID: 37372985 DOI: 10.3390/ijms24129838] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
This study reports the preparation of silica-coated and nano-fructosome encapsulated Candida antarctica lipase B particles (CalB@NF@SiO2) and a demonstration of their enzymatic hydrolysis and acylation. CalB@NF@SiO2 particles were prepared as a function of TEOS concentration (3-100 mM). Their mean particle size was 185 nm by TEM. Enzymatic hydrolysis was performed to compare catalytic efficiencies of CalB@NF and CalB@NF@SiO2. The catalytic constants (Km, Vmax, and Kcat) of CalB@NF and CalB@NF@SiO2 were calculated using the Michaelis-Menten equation and Lineweaver-Burk plot. Optimal stability of CalB@NF@SiO2 was found at pH 8 and a temperature of 35 °C. Moreover, CalB@NF@SiO2 particles were reused for seven cycles to evaluate their reusability. In addition, enzymatic synthesis of benzyl benzoate was demonstrated via an acylation reaction with benzoic anhydride. The efficiency of CalB@NF@SiO2 for converting benzoic anhydride to benzyl benzoate by the acylation reaction was 97%, indicating that benzoic anhydride was almost completely converted to benzyl benzoate. Consequently, CalB@NF@SiO2 particles are better than CalB@NF particles for enzymatic synthesis. In addition, they are reusable with high stability at optimal pH and temperature.
Collapse
Affiliation(s)
- Woo Young Jang
- Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
- Department of Materials Science & Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jung Hoon Sohn
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jeong Ho Chang
- Korea Institute of Ceramic Engineering and Technology, Cheongju 28160, Republic of Korea
| |
Collapse
|
2
|
Amini Y, Shahedi M, Habibi Z, Yousefi M, Ashjari M, Mohammadi M. A multi-component reaction for covalent immobilization of lipases on amine-functionalized magnetic nanoparticles: production of biodiesel from waste cooking oil. BIORESOUR BIOPROCESS 2022; 9:60. [PMID: 38647849 PMCID: PMC10991503 DOI: 10.1186/s40643-022-00552-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
A new approach was used for the immobilization of Thermomyces lanuginosus lipase (TLL), Candida antarctica lipase B (CALB), and Rhizomucor miehei lipase (RML) on amine-functionalized magnetic nanoparticles (Fe3O4@SiO2-NH2) via a multi-component reaction route (using cyclohexyl isocyanide). The used method offered a single-step and very fast process for covalent attachment of the lipases under extremely mild reaction conditions (25 °C, water, and pH 7.0). Rapid and simple immobilization of 20 mg of RML, TLL, and CALB on 1 g of the support produced 100%, 98.5%, and 99.2% immobilization yields, respectively, after 2 h of incubation. The immobilized derivatives were then used for biodiesel production from waste cooking oil. Response surface methodology (RSM) in combination with central composite rotatable design (CCRD) was employed to evaluate and optimize the biodiesel production. The effect of some parameters such as catalyst amount, reaction temperature, methanol concentration, water content for TLL or water-adsorbent for RML and CALB, and ratio of t-butanol (wt%) were investigated on the fatty acid methyl esters (FAME) yield.
Collapse
Affiliation(s)
- Yalda Amini
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Mansour Shahedi
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
| | - Zohreh Habibi
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Yousefi
- Nanobiotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Ashjari
- Department of Organic Chemistry and Oil, Faculty of Chemistry, Shahid Beheshti University, Tehran, Iran
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mehdi Mohammadi
- Bioprocess Engineering Department, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
3
|
Lombardi V, Trande M, Back M, Patwardhan SV, Benedetti A. Facile Cellulase Immobilisation on Bioinspired Silica. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:626. [PMID: 35214956 PMCID: PMC8880491 DOI: 10.3390/nano12040626] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 11/16/2022]
Abstract
Cellulases are enzymes with great potential for converting biomass to biofuels for sustainable energy. However, their commercial use is limited by their costs and low reusability. Therefore, the scientific and industrial sectors are focusing on finding better strategies to reuse enzymes and improve their performance. In this work, cellulase from Aspergillus niger was immobilised through in situ entrapment and adsorption on bio-inspired silica (BIS) supports. To the best of our knowledge, this green effect strategy has never been applied for cellulase into BIS. In situ entrapment was performed during support synthesis, applying a one-pot approach at mild conditions (room temperature, pH 7, and water solvent), while adsorption was performed after support formation. The loading efficiency was investigated on different immobilisation systems by Bradford assay and FTIR. Bovine serum albumin (BSA) was chosen as a control to optimize cellulase loading. The residual activity of cellulase was analysed by the dinitro salicylic acid (DNS) method. Activity of 90% was observed for the entrapped enzyme, while activity of ~55% was observed for the adsorbed enzyme. Moreover, the supported enzyme systems were recycled five times to evaluate their reuse potential. The thermal and pH stability tests suggested that both entrapment and adsorption strategies can increase enzyme activity. The results highlight that the entrapment in BIS is a potentially useful strategy to easily immobilise enzymes, while preserving their stability and recycle potential.
Collapse
Affiliation(s)
- Vincenzo Lombardi
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy;
| | - Matteo Trande
- Department of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK;
| | - Michele Back
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy;
| | - Siddharth V. Patwardhan
- Department of Chemical and Biological Engineering, The University of Sheffield, Mappin Street, Sheffield S1 3JD, UK
| | - Alvise Benedetti
- Department of Molecular Sciences and Nanosystems, Ca’ Foscari University of Venice, Via Torino 155, 30172 Mestre, Italy;
| |
Collapse
|
4
|
Abstract
Lipases are ubiquitous enzymes whose physiological role is the hydrolysis of triacylglycerol into fatty acids. They are the most studied and industrially interesting enzymes, thanks to their versatility to promote a plethora of reactions on a wide range of substrates. In fact, depending on the reaction conditions, they can also catalyze synthesis reactions, such as esterification, acidolysis and transesterification. The latter is particularly important for biodiesel production. Biodiesel can be produced from animal fats or vegetable oils and is considered as a biodegradable, non-toxic and renewable energy source. The use of lipases as industrial catalysts is subordinated to their immobilization on insoluble supports, to allow multiple uses and use in continuous processes, but also to stabilize the enzyme, intrinsically prone to denaturation with consequent loss of activity. Among the materials that can be used for lipase immobilization, mesoporous silica nanoparticles represent a good choice due to the combination of thermal and mechanical stability with controlled textural characteristics. Moreover, the presence of abundant surface hydroxyl groups allows for easy chemical surface functionalization. This latter aspect has the main importance since lipases have a high affinity with hydrophobic supports. The objective of this work is to provide an overview of the recent progress of lipase immobilization in mesoporous silica nanoparticles with a focus on biodiesel production.
Collapse
|
5
|
Green Production of Cladribine by Using Immobilized 2'-Deoxyribosyltransferase from Lactobacillus delbrueckii Stabilized through a Double Covalent/Entrapment Technology. Biomolecules 2021; 11:biom11050657. [PMID: 33947162 PMCID: PMC8146660 DOI: 10.3390/biom11050657] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 12/12/2022] Open
Abstract
Nowadays, enzyme-mediated processes offer an eco-friendly and efficient alternative to the traditional multistep and environmentally harmful chemical processes. Herein we report the enzymatic synthesis of cladribine by a novel 2'-deoxyribosyltransferase (NDT)-based combined biocatalyst. To this end, Lactobacillus delbrueckii NDT (LdNDT) was successfully immobilized through a two-step immobilization methodology, including a covalent immobilization onto glutaraldehyde-activated biomimetic silica nanoparticles followed by biocatalyst entrapment in calcium alginate. The resulting immobilized derivative, SiGPEI 25000-LdNDT-Alg, displayed 98% retained activity and was shown to be active and stable in a broad range of pH (5-9) and temperature (30-60 °C), but also displayed an extremely high reusability (up to 2100 reuses without negligible loss of activity) in the enzymatic production of cladribine. Finally, as a proof of concept, SiGPEI 25000-LdNDT-Alg was successfully employed in the green production of cladribine at mg scale.
Collapse
|
6
|
Mohammadi NS, Khiabani MS, Ghanbarzadeh B, Mokarram RR. Improvement of lipase biochemical properties via a two-step immobilization method: Adsorption onto silicon dioxide nanoparticles and entrapment in a polyvinyl alcohol/alginate hydrogel. J Biotechnol 2020; 323:189-202. [PMID: 32861701 DOI: 10.1016/j.jbiotec.2020.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 06/03/2020] [Accepted: 07/04/2020] [Indexed: 12/21/2022]
Abstract
In this study, the factors affecting lipase adsorption onto SiO2 nanoparticles including SiO2 nanoparticles amounts (8, 19 and 30 mg/mL), lipase concentrations (30, 90 and 150 μg/mL), adsorption temperatures (5, 20 and 35 °C) and adsorption times (1, 12.5 and 24 h) were optimized using central composite design. The optimal conditions were determined as a SiO2 nanoparticles amount of 8.5-14 mg/ml, a lipase concentration of 106-116 μg/mL, an adsorption temperature of 20 °C and an adsorption time of 12.5 h, which resulted in a specific activity and immobilization efficiency of 20,000 (U/g protein) and 60 %, respectively. The lipase adsorbed under optimal conditions (SiO2-lipase) was entrapped in a PVA/Alg hydrogel, successfully. FESEM and FTIR confirmed the two-step method of lipase immobilization. The entrapped SiO2-lipase retained 76.5 % of its initial activity after 30 days of storage at 4 °C while adsorbed and free lipase retained only 43.4 % and 13.7 %, respectively. SiO2-lipase activity decreased to 34.43 % after 10 cycles of use, while the entrapped SiO2-lipase retained about 64.59 % of its initial activity. Compared to free lipase, the Km values increased and decreased for SiO2-lipase and entrapped SiO2-lipase, respectively. Vmax value increased for both SiO2-lipase and entrapped SiO2-lipase.
Collapse
Affiliation(s)
- Najmeh Sabahi Mohammadi
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| | - Mahmood Sowti Khiabani
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran.
| | - Babak Ghanbarzadeh
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran; Department of Food Engineering, Faculty of Engineering, Near East University, Nicosia, Cyprus Mersin, Turkey
| | - Reza Rezaei Mokarram
- Department of Food Science and Technology, Faculty of Agriculture, University of Tabriz, P.O. Box 51666-16471, Tabriz, Iran
| |
Collapse
|
7
|
Taheri-Kafrani A, Kharazmi S, Nasrollahzadeh M, Soozanipour A, Ejeian F, Etedali P, Mansouri-Tehrani HA, Razmjou A, Yek SMG, Varma RS. Recent developments in enzyme immobilization technology for high-throughput processing in food industries. Crit Rev Food Sci Nutr 2020; 61:3160-3196. [PMID: 32715740 DOI: 10.1080/10408398.2020.1793726] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The demand for food and beverage markets has increased as a result of population increase and in view of health awareness. The quality of products from food processing industry has to be improved economically by incorporating greener methodologies that enhances the safety and shelf life via the enzymes application while maintaining the essential nutritional qualities. The utilization of enzymes is rendered more favorable in industrial practices via the modification of their characteristics as attested by studies on enzyme immobilization pertaining to different stages of food and beverage processing; these studies have enhanced the catalytic activity, stability of enzymes and lowered the overall cost. However, the harsh conditions of industrial processes continue to increase the propensity of enzyme destabilization thus shortening their industrial lifespan namely enzyme leaching, recoverability, uncontrollable orientation and the lack of a general procedure. Innovative studies have strived to provide new tools and materials for the development of systems offering new possibilities for industrial applications of enzymes. Herein, an effort has been made to present up-to-date developments on enzyme immobilization and current challenges in the food and beverage industries in terms of enhancing the enzyme stability.
Collapse
Affiliation(s)
- Asghar Taheri-Kafrani
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Sara Kharazmi
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Asieh Soozanipour
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Fatemeh Ejeian
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Parisa Etedali
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | | | - Amir Razmjou
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Samaneh Mahmoudi-Gom Yek
- Department of Chemistry, Faculty of Science, University of Qom, Qom, Iran.,Department of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
8
|
Abstract
β-Glucuronidases are a class of enzymes that catalyze the breakdown of complex carbohydrates. They have well documented biocatalytic applications in synthesis, therapeutics, and analytics that could benefit from enzyme immobilization and stabilization. In this work, we have explored a number of immobilization strategies for Patella vulgata β-Glucuronidase that comprised a tailored combination of biomimetic silica (Si) and magnetic nanoparticles (MNPs). The individual effect of each material on the enzyme upon immobilization was first tested. Three different immobilization strategies for covalent attachment on MNPs and different three catalysts for the deposition of Si particles were tested. We produced nine different immobilized preparations and only two of them presented negligible activity. All the preparations were in the micro-sized range (from 1299 ± 52 nm to 2101 ± 67 nm of hydrodynamic diameter). Their values for polydispersity index varied around 0.3, indicating homogeneous populations of particles with low probability of agglomeration. Storage, thermal, and operational stability were superior for the enzyme immobilized in the composite material. At 80 °C different preparations with Si and MNPs retained 40% of their initial activity after 6 h of incubation whereas the soluble enzyme lost 90% of its initial activity within 11 min. Integration of MNPs provided the advantage of reusing the biocatalyst via magnetic separation up to six times with residual activity. The hybrid material produced herein demonstrated its versatility and robustness as a support for β-Glucuronidases immobilization.
Collapse
|
9
|
Ashjari M, Garmroodi M, Amiri Asl F, Emampour M, Yousefi M, Pourmohammadi Lish M, Habibi Z, Mohammadi M. Application of multi-component reaction for covalent immobilization of two lipases on aldehyde-functionalized magnetic nanoparticles; production of biodiesel from waste cooking oil. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Abstract
In this chapter we describe different strategies for enzyme immobilization in biomimetic silica nanoparticles. Synthesis of this type of support is performed under mild and biocompatible conditions and has been proven suitable for the immobilization and stabilization of a range of enzymes and enzymatic systems in nanostructured particles. Immobilization occurs by entrapment while the silica matrix is formed via catalysis of a polyamine molecule and the presence of silicic acid. Parameters such as enzyme, polyamine molecule, or source of Si concentration have been tailored in order to maximize enzymatic loads, stabilities, and specific activities of the catalysts. We provide different approaches for the immobilization and co-immobilization of enzymes that could be potentially extensible to other biocatalysts.
Collapse
Affiliation(s)
- Erienne Jackson
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay
| | - Sonali Correa
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay
| | - Lorena Betancor
- Laboratorio de Biotecnología, Facultad de Ingeniería, Universidad ORT Uruguay, Montevideo, Uruguay.
| |
Collapse
|
11
|
Rodrigues RC, Virgen-Ortíz JJ, dos Santos JC, Berenguer-Murcia Á, Alcantara AR, Barbosa O, Ortiz C, Fernandez-Lafuente R. Immobilization of lipases on hydrophobic supports: immobilization mechanism, advantages, problems, and solutions. Biotechnol Adv 2019; 37:746-770. [DOI: 10.1016/j.biotechadv.2019.04.003] [Citation(s) in RCA: 287] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 12/13/2022]
|
12
|
Stepacheva AA, Sidorov AI, Matveeva VG, Sulman MG, Sulman EM. Fatty Acid Deoxygenation in Supercritical Hexane over Catalysts Synthesized Hydrothermally for Biodiesel Production. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800595] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Antonina A. Stepacheva
- Tver State Technical UniversityDepartment of Biotechnology and Chemistry A. Nikitin str. 22 170026 Tver Russia
| | - Alexander I. Sidorov
- Tver State Technical UniversityDepartment of Biotechnology and Chemistry A. Nikitin str. 22 170026 Tver Russia
| | - Valentina G. Matveeva
- Tver State Technical UniversityDepartment of Biotechnology and Chemistry A. Nikitin str. 22 170026 Tver Russia
| | - Mikhail G. Sulman
- Tver State Technical UniversityDepartment of Biotechnology and Chemistry A. Nikitin str. 22 170026 Tver Russia
| | - Esther M. Sulman
- Tver State Technical UniversityDepartment of Biotechnology and Chemistry A. Nikitin str. 22 170026 Tver Russia
| |
Collapse
|