1
|
Bayona Solano JE, Sánchez DA, Tonetto GM. Valorization of levulinic acid by esterification with 1-octanol using a novel biocatalyst derived from Araujia sericifera. J Biotechnol 2024; 395:100-109. [PMID: 39326561 DOI: 10.1016/j.jbiotec.2024.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/13/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Levulinic acid, which can be obtained from biomass, has sparked great interest as a biologically-based chemical building block with wide versatility and potential. Its esterification with alcohols of different chain lengths is a promising valorization process for obtaining esters with various applications in the areas of biofuels/biolubricants, food and cosmetics, among others. In this work, the enzymatic esterification of levulinic acid and 1-octanol using a biocatalyst derived from Araujia sericifera latex was studied in systems with and without solvent. The influence of the molar ratio between alcohol and acid (ranging from 2:1-1:9), the biocatalyst loading (between 7.5 % and 17.5 % relative to the acid), the volume of n-heptane used as reaction solvent (from 0 to 4 ml), and the reaction time (6 hours) were investigated. The activity and stability of the biocatalyst in successive uses were also analyzed. A conversion of 49 % was achieved when the reaction was carried out in a solvent-free system, using an alcohol/acid molar ratio of 1:7 and after 5 h of reaction. On the other hand, the conversion was 65.1 % when the reaction was conducted in a system containing 1 ml of n-heptane as solvent, an alcohol/acid molar ratio of 1:8, and 5 h of reaction. In both cases, a temperature as low as 30 °C and an agitation speed of 300 RPM were used.
Collapse
Affiliation(s)
- Jaime E Bayona Solano
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Bahía Blanca 8000, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS - CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina.
| | - Daniel A Sánchez
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Bahía Blanca 8000, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS - CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina.
| | - Gabriela M Tonetto
- Departamento de Ingeniería Química, Universidad Nacional del Sur (UNS), Avda. Alem 1253, Bahía Blanca 8000, Argentina; Planta Piloto de Ingeniería Química - PLAPIQUI (UNS - CONICET), Camino La Carrindanga Km 7, CC 717, Bahía Blanca 8000, Argentina.
| |
Collapse
|
2
|
Kim DH, Cha J, Woo Park G, Soo Kang I, Lee E, Hoon Jung Y, Min K. Biotechnological valorization of levulinic acid as a non-sugar feedstock: New paradigm in biorefineries. BIORESOURCE TECHNOLOGY 2024; 408:131178. [PMID: 39084536 DOI: 10.1016/j.biortech.2024.131178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/25/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024]
Abstract
Due to the severe climate crisis, biorefineries have been highlighted as replacements for fossil fuel-derived refineries. In traditional sugar-based biorefineries, levulinic acid (LA) is a byproduct. Nonetheless, in 2002, the US Department of Energy noted that LA is a significant building block obtained from biomass, and the biorefinery paradigm has shifted from being sugar-based to non-sugar-based. Accordingly, LA is of interest in this review since it can be converted into useful precursors and ultimately can broaden the product spectrum toward more valuable products (e.g., fuels, plastics, and pharmaceuticals), thereby enabling the construction of economically viable biorefineries. This study comprehensively reviews LA production techniques utilizing various bioresources. Recent progress in enzymatic and microbial routes for LA valorization and the LA-derived product spectrum and its versatility are discussed. Finally, challenges and future outlooks for LA-based non-sugar biorefineries are suggested.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea; School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea; Research Institute of Tailored Food Technology, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jaehyun Cha
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Gwon Woo Park
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Im Soo Kang
- Department of Integrative Biology, Kyuongpook National University, Daegu 41556, Republic of Korea
| | - Eunjin Lee
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea
| | - Young Hoon Jung
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Kyoungseon Min
- Gwangju Clean Energy Research Center, Korea Institute of Energy Research (KIER), Gwangju 61003, Republic of Korea.
| |
Collapse
|
3
|
Cambraia MVS, Barbosa MS, Soares CMF, Carvalho AKF, Mendes AA. Process optimization for enzymatic production of a valuable biomass-based ester from levulinic acid. Bioprocess Biosyst Eng 2023; 46:53-67. [PMID: 36409316 DOI: 10.1007/s00449-022-02813-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/09/2022] [Indexed: 11/22/2022]
Abstract
The enzymatic production of isoamyl levulinate via esterification of isoamyl alcohol (IA) and levulinic acid (LA), a biomass-based platform chemical with attractive properties, in a solvent system has been performed in this study. For such a purpose, a low-cost liquid lipase (Eversa® Transform 2.0) immobilized by physical adsorption via hydrophobic interactions (mechanism of interfacial activation) on mesoporous poly(styrenene-divinylbenzene) (PSty-DVB) beads was used as heterogeneous biocatalyst. It was prepared at low ionic strength (5 mmol.L-1 buffer sodium acetate pH 5.0) and 25 ℃ using an initial protein loading of 40 mg.g-1 of support. Maximum protein loading of 31.2 ± 2.8 mg.g-1 of support and an immobilization yield of 83% was achieved. The influence of relevant factors (biocatalyst concentration and reaction temperature) on ester production was investigated using a central composite rotatable design (CCRD). Maximum acid conversion percentage of 65% was achieved after 12 h of reaction at 40 °C, 20% of mass of heterogeneous biocatalyst per mass of reaction mixture (20% m.m-1), and LA:IA molar ratio of 1:1.5 in a methyl isobutyl ketone (MIBK) medium. The biocatalyst retained around of 30% of its initial activity after five consecutive esterification batches under optimal experimental conditions. The proposed experimental procedure can be considered as an acceptable green process (EcoScale score of 66.5), in addition to the fact that a new strategy is proposed to sustainably produce a valuable industrial ester (isoamyl levulinate) from biomass-based materials using an immobilized and low-cost commercial lipase as catalyst.
Collapse
Affiliation(s)
- Marcus V S Cambraia
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Milson S Barbosa
- Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Cleide M F Soares
- Tiradentes University, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil.,Institute of Technology and Research, Av. Murilo Dantas 300, Farolândia, Aracaju, Sergipe, 49032-490, Brazil
| | - Ana K F Carvalho
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil
| | - Adriano A Mendes
- Graduate Program in Biotechnology, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil. .,Institute of Chemistry, Federal University of Alfenas, Alfenas, MG, 37130-001, Brazil.
| |
Collapse
|
4
|
Baco S, Klinksiek M, Ismail Bedawi Zakaria R, Antonia Garcia-Hernandez E, Mignot M, Legros J, Held C, Casson Moreno V, Leveneur S. Solvent effect investigation on the acid-catalyzed esterification of levulinic acid by ethanol aided by a Linear Solvation Energy Relationship. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
Abstract
At present, the trend towards partial replacement of petroleum-derived fuels by those from the revaluation of biomass has become of great importance. An effective strategy for processing complex biomass feedstocks involves prior conversion to simpler compounds (platform molecules) that are more easily transformed in subsequent reactions. This study analyzes the metal–organic frameworks (MOFs) that contain Zr metal clusters formed by ligands of terephthalic acid (UiO-66) and aminoterephthalic acid (UiO-66-NH2), as active and stable catalysts for the esterification of levulinic acid with methanol. An alternative synthesis is presented by means of ultrasonic stirring at room temperature and 60 °C, in order to improve the structural properties of the catalysts. They were analyzed by X-ray diffraction, scanning electron microscopy, infrared spectroscopy, X-ray photoelectron spectroscopy, microwave plasma atomic emission spectroscopy, acidity measurement, and N2 adsorption. The catalytic reaction was carried out in a batch system and under pressure in an autoclave. Its progress was followed by gas chromatography and mass spectrometry. Parameters such as temperature, catalyst mass, and molar ratio of reactants were optimized to improve the catalytic performance. The MOF that presented the highest activity and selectivity to the desired product was obtained by synthesis with ultrasound and 60 °C with aminoterephthalic acid. The methyl levulinate yield was 67.77% in batch at 5 h and 85.89% in an autoclave at 1 h. An analysis of the kinetic parameters of the reaction is presented. The spent material can be activated by ethanol washing allowing the catalytic activity to be maintained in the recycles.
Collapse
|
6
|
Song M, Di X, Zhang Y, Sun Y, Wang Z, Yuan Z, Guo Y. The effect of enzyme loading, alcohol/acid ratio and temperature on the enzymatic esterification of levulinic acid with methanol for methyl levulinate production: a kinetic study. RSC Adv 2021; 11:15054-15059. [PMID: 35424031 PMCID: PMC8698936 DOI: 10.1039/d1ra01780b] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 04/14/2021] [Indexed: 01/26/2023] Open
Abstract
Based on reaction reversibility and the law of mass action, a mathematical model was developed. By the developed model, the effect of enzyme loading, molar alcohol/acid ratio, and temperature on methyl levulinate yield was kinetically analyzed.
Collapse
Affiliation(s)
- Miaojia Song
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Xiaohui Di
- Laboratory of Synthesis, Organic Reactivity & Catalysis
- Strasbourg Institute of Chemistry, associated with CNRS (UMR 7177)
- University of Strasbourg
- France
| | - Yu Zhang
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Zhongming Wang
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Zhenhong Yuan
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| | - Ying Guo
- Guangzhou Institute of Energy Conversion
- Chinese Academy of Sciences
- CAS Key Laboratory of Renewable Energy
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development
- Guangzhou 510640
| |
Collapse
|
7
|
Chang SH. Utilization of green organic solvents in solvent extraction and liquid membrane for sustainable wastewater treatment and resource recovery-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:32371-32388. [PMID: 32533493 DOI: 10.1007/s11356-020-09639-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Water pollution and depletion of natural resources have motivated the utilization of green organic solvents in solvent extraction (SX) and liquid membrane (LM) for sustainable wastewater treatment and resource recovery. SX is an old and established separation method, while LM, which combines both the solute removal and recovery processes of SX in a single unit, is a revolutionary separation technology. The organic solvents used for solute removal in SX and LM can be categorized into sole conventional, mixed conventional-green, and sole green organic solvents, whereas the stripping agents used for solute recovery include acids, bases, metal salts, and water. This review revealed that the performance of greener organic solvents (mixed conventional-green and sole green organic solvents) was on par with the sole conventional organic solvents. However, some green organic solvents may threaten food security, while others could be pricey. The distinctive extraction theories of various sole green organic solvents (free fatty acid-rich oils, triglyceride-rich oils, and deep eutectic solvents) affect their application suitability for a specific type of wastewater. Organic liquid wastes are among the optimal green organic solvents for SX and LM in consideration of their triple environmental, economic, and performance benefits.
Collapse
Affiliation(s)
- Siu Hua Chang
- Faculty of Chemical Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500, Permatang Pauh, Penang, Malaysia.
| |
Collapse
|
8
|
Zhang Y, Di X, Wang W, Song M, Yu Q, Wang Z, Yuan Z, Chen X, Xu H, Guo Y. Kinetic study of lipase-catalyzed esterification of furoic acid to methyl-2-furoate. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107587] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
9
|
Abstract
In this review key processes for the synthesis of greener or more sustainable solvents derived from renewable sources (saccharides, lignocellulose and triglycerides) are discussed. It is shown that a series of platform chemicals such as glycerol, levulinic acid and furans can be converted into a variety of solvents through catalytic
transformations that include hydrolysis, esterification, reduction and etherification reactions. It was also considered several aspects of each class of solvent regarding performance within the context of the reactions or extractions for which it is employed.
Collapse
|
10
|
Mesbah NM. Covalent immobilization of a halophilic, alkalithermostable lipase LipR2 on Florisil® nanoparticles for production of alkyl levulinates. Arch Biochem Biophys 2019; 667:22-29. [DOI: 10.1016/j.abb.2019.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/18/2019] [Indexed: 12/13/2022]
|