1
|
Liu X, Ding C, He T, Zhu Y, Sun L, Xu C, Gu X. Kinetic modeling of xylonic acid production by Gluconobacter oxydans: effects of hydrodynamic conditions. Bioprocess Biosyst Eng 2023; 46:829-837. [PMID: 36952003 DOI: 10.1007/s00449-023-02865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 03/11/2023] [Indexed: 03/24/2023]
Abstract
In this study, the synthesis of xylonic acid from xylose by Gluconobacter oxydans NL71 has been investigated. According to the relationship between oxygen transfer rate and oxygen uptake rate, three different kinetic models of product formation were established and the nonlinear fitting was carried out. The results showed that G. oxydans has critical dissolved oxygen under different strain concentrations, and the relationship between respiration intensity and dissolved oxygen conformed to the Monod equation [Formula: see text]. The maximum reaction rate per unit cell mass and the theoretical maximum specific productivity of G. oxydans obtained by the kinetic model are 0.042 mol/L/h and 6.97 g/gx/h, respectively. These results will assist in determining the best balance between the airflow rate and cell concentration in the reaction and improve the production efficiency of xylonic acid.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenrong Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Tao He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Yafei Zhu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Liqun Sun
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Identification of a Novel Dehydrogenase from Gluconobacter oxydans for Degradation of Inhibitors Derived from Lignocellulosic Biomass. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Inhibitors from lignocellulosic biomass have become the bottleneck of biorefinery development. Gluconobacter oxydans DSM2003 showed a high performance of inhibitors degradation, which had a short lag time in non-detoxified corn stover hydrolysate and could convert 90% of aldehyde inhibitors to weaker toxic acids. In this study, an aldehyde dehydrogenase gene W826-RS0111485, which plays an important function in the conversion of aldehyde inhibitors in Gluconobacter oxydans DSM2003, was identified. W826-RS0111485 was found by protein profiling, then a series of enzymatic properties were determined and were heterologously expressed in E. coli. The results indicated that NADP is the most suitable cofactor of the enzyme when aldehyde inhibitor is the substrate, and it had the highest oxidation activity to furfural among several aldehyde inhibitors. Under the optimal reaction conditions (50 °C, pH 7.5), the Km and Vmax of the enzyme under furfural stress were 2.45 and 80.97, respectively, and the Kcat was 232.22 min−1. The biodetoxification performance experiments showed that the recombinant E. coli containing the target gene completely converted 1 g/L furfural to furoic acid within 8 h, while the control E. coli only converted 18% furfural within 8 h. It was further demonstrated that W826-RS0111485 played an important role in the detoxification of furfural. The mining of this inhibitor degradation gene could provide a theoretical basis for rational modification of industrial strains to enhance its capacity of inhibitor degradation in the future.
Collapse
|
3
|
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023; 65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.
Collapse
|
4
|
Battling S, Pastoors J, Deitert A, Götzen T, Hartmann L, Schröder E, Yordanov S, Büchs J. Development of a novel defined minimal medium for Gluconobacter oxydans 621H by systematic investigation of metabolic demands. J Biol Eng 2022; 16:31. [DOI: 10.1186/s13036-022-00310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
Abstract
Background
Historically, complex media are used for the cultivation of Gluconobacter oxydans in industry and research. Using complex media has different drawbacks like higher costs for downstream processing and significant variations in fermentation performances. Synthetic media can overcome those drawbacks, lead to reproducible fermentation performances. However, the development of a synthetic medium is time and labour consuming. Detailed knowledge about auxotrophies and metabolic requirements of G. oxydans is necessary. In this work, we use a systematic approach applying the in-house developed μRAMOS technology to identify auxotrophies and develop a defined minimal medium for cultivation of G. oxydans fdh, improving the production process of the natural sweetener 5-ketofructose.
Results
A rich, defined synthetic medium, consisting of 48 components, including vitamins, amino acids and trace elements, was used as a basis for medium development. In a comprehensive series of experiments, component groups and single media components were individually omitted from or supplemented to the medium and analysed regarding their performance. Main components like salts and trace elements were necessary for the growth of G. oxydans fdh, whereas nucleotides were shown to be non-essential. Moreover, results indicated that the amino acids isoleucine, glutamate and glycine and the vitamins nicotinic acid, pantothenic acid and p-aminobenzoic acid are necessary for the growth of G. oxydans fdh. The glutamate concentration was increased three-fold, functioning as a precursor for amino acid synthesis. Finally, a defined minimal medium called ‘Gluconobacter minimal medium’ was developed. The performance of this medium was tested in comparison with commonly used media for Gluconobacter. Similar/competitive results regarding cultivation time, yield and productivity were obtained. Moreover, the application of the medium in a fed-batch fermentation process was successfully demonstrated.
Conclusion
The systematic investigation of a wide range of media components allowed the successful development of the Gluconobacter minimal medium. This chemically defined medium contains only 14 ingredients, customised for the cultivation of G. oxydans fdh and 5-ketofructose production. This enables a more straightforward process development regarding upstream and downstream processing. Moreover, metabolic demands of G. oxydans were identified, which further can be used in media or strain development for different processes.
Collapse
|
5
|
He Y, Xie Z, Zhang H, Liebl W, Toyama H, Chen F. Oxidative Fermentation of Acetic Acid Bacteria and Its Products. Front Microbiol 2022; 13:879246. [PMID: 35685922 PMCID: PMC9171043 DOI: 10.3389/fmicb.2022.879246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 04/25/2022] [Indexed: 11/13/2022] Open
Abstract
Acetic acid bacteria (AAB) are a group of Gram-negative, strictly aerobic bacteria, including 19 reported genera until 2021, which are widely found on the surface of flowers and fruits, or in traditionally fermented products. Many AAB strains have the great abilities to incompletely oxidize a large variety of carbohydrates, alcohols and related compounds to the corresponding products mainly including acetic acid, gluconic acid, gulonic acid, galactonic acid, sorbose, dihydroxyacetone and miglitol via the membrane-binding dehydrogenases, which is termed as AAB oxidative fermentation (AOF). Up to now, at least 86 AOF products have been reported in the literatures, but no any monograph or review of them has been published. In this review, at first, we briefly introduce the classification progress of AAB due to the rapid changes of AAB classification in recent years, then systematically describe the enzymes involved in AOF and classify the AOF products. Finally, we summarize the application of molecular biology technologies in AOF researches.
Collapse
Affiliation(s)
- Yating He
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhenzhen Xie
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Zhang
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wolfgang Liebl
- Department of Microbiology, Technical University of Munich, Freising, Germany
| | - Hirohide Toyama
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of the Ryukyus, Okinawa, Japan
| | - Fusheng Chen
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, China
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Fusheng Chen
| |
Collapse
|
6
|
Xu C, He T, Zhou X, Xu Y, Gu X. Influence of oxygen transfer and uptake rates on xylonic acid production from xylose by Gluconobacter oxydans. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
He T, Xu C, Ding C, Liu X, Gu X. Optimization of Specific Productivity for Xylonic Acid Production by Gluconobacter oxydans Using Response Surface Methodology. Front Bioeng Biotechnol 2021; 9:729988. [PMID: 34485263 PMCID: PMC8414524 DOI: 10.3389/fbioe.2021.729988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/30/2021] [Indexed: 12/02/2022] Open
Abstract
Large amounts of xylose cannot be efficiently metabolized and fermented due to strain limitations in lignocellulosic biorefinery. The conversion of xylose into high value chemicals can help to reduce the cost of commercialization. Therefore, xylonic acid with potential value in the construction industry offers a valuable alternative for xylose biorefinery. However, low productivity is the main challenge for xylonic acid fermentation. This study investigated the effect of three reaction parameters (agitation, aeration, and biomass concentration) on xylose acid production and optimized the key process parameters using response surface methodology The second order polynomial model was able to fit the experimental data by using multiple regression analysis. The maximum specific productivity was achieved with a value of 6.64 ± 0.20 g gx−1 h−1 at the optimal process parameters (agitation speed 728 rpm, aeration rate 7 L min−1, and biomass concentration 1.11 g L−1). These results may help to improve the production efficiency during xylose acid biotransformation from xylose.
Collapse
Affiliation(s)
- Tao He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing, China
| | - Chaozhong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing, China
| | - Chenrong Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing, China
| | - Xu Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing, China
| | - Xiaoli Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China.,Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing, China
| |
Collapse
|
8
|
Han J, Hua X, Zhou X, Xu B, Wang H, Huang G, Xu Y. A cost-practical cell-recycling process for xylonic acid bioproduction from acidic lignocellulosic hydrolysate with whole-cell catalysis of Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2021; 333:125157. [PMID: 33878501 DOI: 10.1016/j.biortech.2021.125157] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 04/06/2021] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Xylonic acid (XA), as a bio-based platform chemical, is of considerable interest for xylose bioconversion. The whole-cell catalysis of Gluconobacter oxydans presents a promising application potential, while the hard works of cell culture still severely hinder XA business from the crude toxics-containing lignocellulosic hydrolysate. Hence, the bacterial cells should be recycled to reduce commercial production cost. The implementation of diatomite detoxification not only absorbs most of the degraded inhibitors in hydrolysate, but also confines the sugar contents loss with 10% and allows the bacterial cells to maintain 90% bioconversion performance during cell-recycling operation. Additionally, a scale-up of XA bioproduction was achieved in a sealed oxygen supply fermenter. Finally, 210 g XA was produced from 1000 g corncob originated hydrolysate within 24 h of whole-cell catalysis. Diatomite treatment provides an efficient and cost-practical approach for the commercial bioproduction of biochemicals like XA from lignocellulosic biomass.
Collapse
Affiliation(s)
- Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Bin Xu
- ECO Zhuoxin Energy-saving Technology (Shanghai) Company Limited, Shanghai 200000, People's Republic of China
| | - Huan Wang
- ECO Zhuoxin Energy-saving Technology (Shanghai) Company Limited, Shanghai 200000, People's Republic of China
| | - Guohong Huang
- Nanjing Hydraulic Research Institute, Materials & Structural Engineering Department, Nanjing 210029, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
9
|
Chen Y, Liu L, Yu S, Li J, Zhou J, Chen J. Identification of Gradient Promoters of Gluconobacter oxydans and Their Applications in the Biosynthesis of 2-Keto-L-Gulonic Acid. Front Bioeng Biotechnol 2021; 9:673844. [PMID: 33898410 PMCID: PMC8064726 DOI: 10.3389/fbioe.2021.673844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The acetic acid bacterium Gluconobacter oxydans is known for its unique incomplete oxidation and therefore widely applied in the industrial production of many compounds, e.g., 2-keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C. However, few molecular tools are available for metabolically engineering G. oxydans, which greatly limit the strain development. Promoters are one of vital components to control and regulate gene expression at the transcriptional level for boosting production. In this study, the low activity of SDH was found to hamper the high yield of 2-KLG, and enhancing the expression of SDH was achieved by screening the suitable promoters based on RNA sequencing data. We obtained 97 promoters from G. oxydans’s genome, including two strong shuttle promoters and six strongest promoters. Among these promoters, P3022 and P0943 revealed strong activities in both Escherichia coli and G. oxydans, and the activity of the strongest promoter (P2703) was about threefold that of the other reported strong promoters of G. oxydans. These promoters were used to overexpress SDH in G. oxydans WSH-003. The titer of 2-KLG reached 3.7 g/L when SDH was under the control of strong promoters P2057 and P2703. This study obtained a series of gradient promoters, including two strong shuttle promoters, and expanded the toolbox of available promoters for the application in metabolic engineering of G. oxydans for high-value products.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Li Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
10
|
Gorte O, Kugel M, Ochsenreither K. Optimization of carbon source efficiency for lipid production with the oleaginous yeast Saitozyma podzolica DSM 27192 applying automated continuous feeding. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:181. [PMID: 33292512 PMCID: PMC7607716 DOI: 10.1186/s13068-020-01824-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/23/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Biotechnologically produced microbial lipids are of interest as potential alternatives for crude and plant oils. Their lipid profile is similar to plant oils and can therefore be a substitute for the production of biofuels, additives for food and cosmetics industry as well as building blocks for oleochemicals. Commercial microbial lipids production, however, is still not profitable and research on process optimization and cost reduction is required. This study reports on the process optimization using glucose or xylose with the unconventional oleaginous yeast Saitozyma podzolica DSM 27192 aiming to reduce the applied carbon source amount without sacrificing lipid productivity. RESULTS By optimizing the process parameters temperature and pH, lipid productivity was enhanced by 40%. Thereupon, by establishing a two-phase strategy with an initial batch phase and a subsequent fed-batch phase for lipid production in which a constant sugar concentration of about 10 g/L was maintained, resulted in saving of ~ 41% of total glucose and ~ 26% of total xylose. By performing the automated continuous sugar feed the total sugar uptake was improved to ~ 91% for glucose and ~ 92% for xylose and thus, prevented waste of unused carbon source in the cultivation medium. In addition, reduced glucose cultivation resulted in to 28% higher cell growth and 19% increase of lipid titer. By using xylose, the by-product xylonic acid was identified for the first time as by-product of S. podzolica. CONCLUSIONS These findings provide a broad view of different cultivation process strategies with subsequent comparison and evaluation for lipid production with S. podzolica. Additionally, new biotechnological characteristics of this yeast were highlighted regarding the ability to produce valuable organic acids from sustainable and renewable sugars.
Collapse
Affiliation(s)
- Olga Gorte
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Fitz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Michaela Kugel
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Fitz-Haber-Weg 4, 76131 Karlsruhe, Germany
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Science 2: Technical Biology, Karlsruhe Institute of Technology, Fitz-Haber-Weg 4, 76131 Karlsruhe, Germany
| |
Collapse
|