1
|
Lyu Y, Chen F, Mao W, Ge Z, Zhang Y, Hu Y, Jin W, Liu J, Chen J, Yu X, Zhang X. Two novel β-galactosidases from Aeromonas caviae with potential industrial applications in milk and catalytic mechanism analysis using molecular docking. Int J Biol Macromol 2025; 305:141188. [PMID: 39971054 DOI: 10.1016/j.ijbiomac.2025.141188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/01/2025] [Accepted: 02/15/2025] [Indexed: 02/21/2025]
Abstract
Lactose intolerance has been a significant global health concern, as it is caused by the absence of lactase, leading to the inability of the human body to absorb lactose. This study investigated two genes encoding maltose O-acetyltransferase with β-galactosidase activity from Aeromonas caviae to evaluate their potential application value for lactose degradation in bovine and human milk. The two novel β-galactosidases (AcGal25: 22.0 kDa and AcGal31: 21.3 kDa) were heterologously expressed and biochemically characterized. The optimal pH of both enzymes was 8.0, and the optimal temperature of AcGal25 and AcGal31 were 45 and 42 °C, respectively. Fe2+ and Mn2+ significantly promoted the activity of both enzymes. The two enzymes kept over 75 % activity after incubation for 30 days at 45 °C. HPLC results showed that lactose in bovine milk was completely hydrolyzed by AcGal31 when reacted for 6 h, and about 5 % lactose in human milk was left. The docking results showed that AcGal31 has a more vital lactose-binding ability than AcGal25. LYS129 and ARG165 are highly likely catalytic sites of AcGal31. AcGal31 demonstrated excellent commercial value in making lactose-free milk.
Collapse
Affiliation(s)
- Yongmei Lyu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Fengxiang Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wanjie Mao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Zhihan Ge
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Yaoyao Zhang
- National Engineering Research Center of Wheat and Corn Further Processing, School of Food Science and Engineering, Henan University of Technology, Lianhua Road 100, Zhengzhou 450001, Henan Province, PR China
| | - Yue Hu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Wenbin Jin
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jinbin Liu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Jia Chen
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China
| | - Xiaohong Yu
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| | - Xiaoyang Zhang
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, PR China.
| |
Collapse
|
2
|
Huo Y, Zou F, You Z, Zhao G, Dai M, Zhang S. Cold-active β-galactosidase from Weissella confusa SW1 for the preparation of low-lactose milk. Int J Food Microbiol 2025; 429:111003. [PMID: 39662279 DOI: 10.1016/j.ijfoodmicro.2024.111003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/13/2024]
Abstract
β-Galactosidases can be used to degrade lactose in milk to prepare lactose-free milk, which is sweeter than ordinary milk and suitable for people with lactose intolerance. The β-galactosidase gene (WcGal2809) was cloned from Weissella confusa SW1 and successfully expressed in Escherichia coli BL21(DE3). The active WcGal2809 was identified to be a heterodimer composed of two distinct proteins LacL (72.4 kDa) and LacM (33.2 kDa), and it belonged to glycoside hydrolase family 2. The purified WcGal2809 showed the maximum activity at 25 °C and pH 7.0 for o-nitrophenyl-β-D-galactopyranoside (oNPG). WcGal2809 was strongly activated by Mn2+, Mg2+, and Fe2+, and significantly inhibited by Zn2+, Cu2+, and Ni+. The activity of WcGal2809 decreased quickly after incubation at 40 °C or higher temperature, suggesting it was a cold-adapted enzyme. Additionally, 6 U of WcGal2809 could hydrolyze 85.23 % of the lactose in 1 mL of milk at 25 °C after incubation for 48 h, while 2 U of WcGal2809 could hydrolyze 74.40 % of the lactose in 1 mL of milk at 25 °C after incubation for 7 d. Taken together, WcGal2809 is a promising industrial biocatalyst for efficiently hydrolyzing lactose in milk at room temperature during milk storage or transportation.
Collapse
Affiliation(s)
- Yingxin Huo
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Fanghong Zou
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Zihui You
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Guoyan Zhao
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Meixue Dai
- College of Life Science, Shandong Normal University, Jinan 250358, China
| | - Susu Zhang
- College of Life Science, Shandong Normal University, Jinan 250358, China.
| |
Collapse
|
3
|
Miao M, Yao Y, Yan Q, Jiang Z, He G, Yang S. Biochemical characterization of a novel β-galactosidase from Pedobacter sp. with strong transglycosylation activity at low lactose concentration. Folia Microbiol (Praha) 2024; 69:1319-1330. [PMID: 38771554 DOI: 10.1007/s12223-024-01169-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
A novel β-galactosidase gene (PbBgal35A) from Pedobacter sp. CAUYN2 was cloned and expressed in Escherichia coli. The gene had an open reading frame of 1917 bp, encoding 638 amino acids with a predicted molecular mass of 62.3 kDa. The deduced amino acid sequence of the gene shared the highest identity of 41% with a glycoside hydrolase family 35 β-galactosidase from Xanthomonas campestris pv. campestris (AAP86763.1). The recombinant β-galactosidase (PbBgal35A) was purified to homogeneity with a specific activity of 65.9 U/mg. PbBgal35A was optimally active at pH 5.0 and 50 °C, respectively, and it was stable within pH 4.5‒7.0 and up to 45 °C. PbBgal35A efficiently synthesized galacto-oligosaccharides from lactose with a conversion ratio of 32% (w/w) and fructosyl-galacto-oligosaccharides from lactulose with a conversion ratio of 21.9% (w/w). Moreover, the enzyme catalyzed the synthesis of galacto-oligosaccharides from low-content lactose in fresh milk, and the GOS conversion ratios of 17.1% (w/w) and 7.8% (w/w) were obtained when the reactions were performed at 45 and 4 °C, respectively. These properties make PbBgal35A an ideal candidate for commercial use in the manufacturing of GOS-enriched dairy products.
Collapse
Affiliation(s)
- Miao Miao
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Yuchen Yao
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Qiaojuan Yan
- Bioresource Utilization Laboratory, College of Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China
| | - Guangming He
- Jiangxi Jinsuifeng Sugar Industry Co., Ltd., Yichun, 336000, China
| | - Shaoqing Yang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, No. 17 Qinghua East Road, Haidian District, Beijing, 100083, China.
| |
Collapse
|
4
|
Nitipan S, Saithong P. Characterization and sequencing analysis of pLP2.5-11 and pLP3.0-4 novel cryptic plasmids from Lactiplantibacillus plantarum WP72/27. 3 Biotech 2023; 13:263. [PMID: 37408733 PMCID: PMC10317920 DOI: 10.1007/s13205-023-03684-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/25/2023] [Indexed: 07/07/2023] Open
Abstract
We sequenced and described two cryptic plasmids from Lactiplantibacillus plantarum strain WP72/27, termed pLP2.5-11 (OP831909) and pLP3.0-4 (OP831910). Nucleotide sequencing gave the sizes of pLP2.5-11 and pLP3.0-4 as 2754 and 3197 base pairs, with G + C contents 38.89% and 40.88% and predicted two and eight putative open reading frames, respectively. The RepA protein of pLP2.5-11 shared a 99% identity with pC30il, pLP1 and pC30il, whereas the RepB protein of pLP3.0-4 shared a 98% identity with pXY3, a member of the rolling-circle replication (RCR) pC194 family. The origin of plasmid replication was predicted to consist of inverted and directed repeat sequences upstream of the Rep genes. Sequence analysis predicted that both pLP2.5-11 and pLP3.0-4 plasmids replicate via a rolling-circle process. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03684-y.
Collapse
Affiliation(s)
- Supachai Nitipan
- Department of Biology, Faculty of Science, Thaksin University, Phattalung Campus, Phattalung, 93210 Thailand
- Microbial Technology for Agriculture, Food and Environment Research Center, Thaksin University, Phatthalung Campus, Phatthalung, 93210 Thailand
| | - Pramuan Saithong
- Department of Applied Microbiology, Institute of Food Research and Product Development, Kasetsart University, Bangkok, 10900 Thailand
| |
Collapse
|
5
|
Gennari A, Simon R, de Andrade BC, Kuhn D, Renard G, Chies JM, Volpato G, Volken de Souza CF. Recombinant Production in Escherichia coli of a β-galactosidase Fused to a Cellulose-binding Domain Using Low-cost Inducers in Fed-batch Cultivation. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Functional Characterisation of Bile Metagenome: Study of Metagenomic Dark Matter. Microorganisms 2021; 9:microorganisms9112201. [PMID: 34835325 PMCID: PMC8621414 DOI: 10.3390/microorganisms9112201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/01/2021] [Accepted: 10/11/2021] [Indexed: 11/16/2022] Open
Abstract
Gallbladder metagenome involves a wide range of unidentified sequences comprising the so-called metagenomic dark matter. Therefore, this study aimed to characterise three gallbladder metagenomes and a fosmid library with an emphasis on metagenomic dark matter fraction. For this purpose, a novel data analysis strategy based on the combination of remote homology and molecular modelling has been proposed. According to the results obtained, several protein functional domains were annotated in the metagenomic dark matter fraction including acetyltransferases, outer membrane transporter proteins, membrane assembly factors, DNA repair and recombination proteins and response regulator phosphatases. In addition, one deacetylase involved in mycothiol biosynthesis was found in the metagenomic dark matter fraction of the fosmid library. This enzyme may exert a protective effect in Actinobacteria against bile components exposure, in agreement with the presence of multiple antibiotic and multidrug resistance genes. Potential mechanisms of action of this novel deacetylase were elucidated by molecular simulations, highlighting the role of histidine and aspartic acid residues. Computational pipelines presented in this work may be of special interest to discover novel microbial enzymes which had not been previously characterised.
Collapse
|
7
|
A review on enzyme-producing lactobacilli associated with the human digestive process: From metabolism to application. Enzyme Microb Technol 2021; 149:109836. [PMID: 34311881 DOI: 10.1016/j.enzmictec.2021.109836] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Complex carbohydrates, proteins, and other food components require a longer digestion process to be absorbed by the lining of the alimentary canal. In addition to the enzymes of the gastrointestinal tract, gut microbiota, comprising a large range of bacteria and fungi, has complementary action on the production of digestive enzymes. Within this universe of "hidden soldiers", lactobacilli are extensively studied because of their ability to produce lactase, proteases, peptidases, fructanases, amylases, bile salt hydrolases, phytases, and esterases. The administration of living lactobacilli cells has been shown to increase nutrient digestibility. However, it is still little known how these microbial-derived enzymes act in the human body. Enzyme secretion may be affected by variations in temperature, pH, and other extreme conditions faced by the bacterial cells in the human body. Besides, lactobacilli administration cannot itself be considered the only factor interfering with enzyme secretion, human diet (microbial substrate) being determinant in their metabolism. This review highlights the potential of lactobacilli to release functional enzymes associated with the digestive process and how this complex metabolism can be explored to contribute to the human diet. Enzymatic activity of lactobacilli is exerted in a strain-dependent manner, i.e., within the same lactobacilli species, there are different enzyme contents, leading to a large variety of enzymatic activities. Thus, we report current methods to select the most promising lactobacilli strains as sources of bioactive enzymes. Finally, a patent landscape and commercial products are described to provide the state of art of the transfer of knowledge from the scientific sphere to the industrial application.
Collapse
|
8
|
Antarctic Rahnella inusitata: A Producer of Cold-Stable β-Galactosidase Enzymes. Int J Mol Sci 2021; 22:ijms22084144. [PMID: 33923711 PMCID: PMC8074230 DOI: 10.3390/ijms22084144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/18/2022] Open
Abstract
There has been a recent increase in the exploration of cold-active β-galactosidases, as it offers new alternatives for the dairy industry, mainly in response to the current needs of lactose-intolerant consumers. Since extremophilic microbial compounds might have unique physical and chemical properties, this research aimed to study the capacity of Antarctic bacterial strains to produce cold-active β-galactosidases. A screening revealed 81 out of 304 strains with β-galactosidase activity. The strain Se8.10.12 showed the highest enzymatic activity. Morphological, biochemical, and molecular characterization based on whole-genome sequencing confirmed it as the first Rahnella inusitata isolate from the Antarctic, which retained 41–62% of its β-galactosidase activity in the cold (4 °C–15 °C). Three β-galactosidases genes were found in the R. inusitata genome, which belong to the glycoside hydrolase families GH2 (LacZ and EbgA) and GH42 (BglY). Based on molecular docking, some of these enzymes exhibited higher lactose predicted affinity than the commercial control enzyme from Aspergillus oryzae. Hence, this work reports a new Rahnella inusitata strain from the Antarctic continent as a prominent cold-active β-galactosidase producer.
Collapse
|