1
|
Rahchamandi SYR, Mirhadi E, Gheybi F, Kazemi-Beydokhti A, Jaafari MR, Mostafavi E, Kesharwani P, Sahebkar A, Alavizadeh SH. Engineering carbon-based nanomaterials for the delivery of platinum compounds: An innovative cancer disarming frontier. ENVIRONMENTAL RESEARCH 2024; 262:119933. [PMID: 39278586 DOI: 10.1016/j.envres.2024.119933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/12/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Carbon-based nanomaterials have been frequently used as one of the most advanced and fascinating nanocarriers for drug delivery applications due to their unique physicochemical properties. Varying types of carbon nanomaterials (CNMs) including carbon nanotubes, graphene, graphene oxides, carbon nanohorns, fullerenes, carbon nanodots, and carbon nanodiamonds are promising candidates for designing novel systems to deliver platinum compounds. CNMs modification with various moieties renders vast bio-applications in the area of targeted and organelle-specific cancer therapy. This review featured an updated and concise summarizations of various types of CNMs, their synthesis, advantages and disadvantages including potential bio-toxicity for biomedical applications. The therapeutic utility of CNMs and their efficacy have been noticed and for the first time, this review addressed CNMs-focused applications on the delivery of platinum-derivatives to the cancer site. Collectively, the contents of this review will assist researchers to focus on the possible fabrication, bio-functionalization and designing methods of CNMs to the further development of their future biomedical implementations.
Collapse
Affiliation(s)
- Seyedeh Yasaman Rahnamaei Rahchamandi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elaheh Mirhadi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Gheybi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amin Kazemi-Beydokhti
- Department of Chemical Engineering, School of Petroleum and Petrochemical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Seyedeh Hoda Alavizadeh
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Mohan H, Fagan A, Giordani S. Carbon Nanomaterials (CNMs) in Cancer Therapy: A Database of CNM-Based Nanocarrier Systems. Pharmaceutics 2023; 15:pharmaceutics15051545. [PMID: 37242787 DOI: 10.3390/pharmaceutics15051545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
Carbon nanomaterials (CNMs) are an incredibly versatile class of materials that can be used as scaffolds to construct anticancer nanocarrier systems. The ease of chemical functionalisation, biocompatibility, and intrinsic therapeutic capabilities of many of these nanoparticles can be leveraged to design effective anticancer systems. This article is the first comprehensive review of CNM-based nanocarrier systems that incorporate approved chemotherapy drugs, and many different types of CNMs and chemotherapy agents are discussed. Almost 200 examples of these nanocarrier systems have been analysed and compiled into a database. The entries are organised by anticancer drug type, and the composition, drug loading/release metrics, and experimental results from these systems have been compiled. Our analysis reveals graphene, and particularly graphene oxide (GO), as the most frequently employed CNM, with carbon nanotubes and carbon dots following in popularity. Moreover, the database encompasses various chemotherapeutic agents, with antimicrotubule agents being the most common payload due to their compatibility with CNM surfaces. The benefits of the identified systems are discussed, and the factors affecting their efficacy are detailed.
Collapse
Affiliation(s)
- Hugh Mohan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Andrew Fagan
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| | - Silvia Giordani
- School of Chemical Sciences, Dublin City University, Glasnevin, D09 NA55 Dublin, Ireland
| |
Collapse
|
3
|
Guan X, Qin T, Qi T. Precision Medicine in Lung Cancer Theranostics: Paving the Way from Traditional Technology to Advance Era. Cancer Control 2022. [PMCID: PMC8862127 DOI: 10.1177/10732748221077351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Precision medicine for lung cancer theranostics is an advanced model combining prevention, diagnosis, and treatment for individual or specific population diseases to match individual patient differences. It involves collection and integration of genome, transcriptome, proteome, and metabolome features of lung cancer patients, combined with clinical characteristics. Subsequently, large data and artificial intelligence (AI) analysis have emerged to identify the most suitable therapeutic targets and personal treatment strategies for treatment of patients with lung cancer. We review the development and challenges associated with diagnosis and therapy of lung cancer from traditional technology, including immunotherapy prediction markers, liquid biopsy, surgery, and tumor immune microenvironment and patient-derived xenograft models, to AI in the era of precision medicine. AI has improved precision medicine and the predictive ability and accuracy of patient outcomes. Finally, we discuss some opportunities and challenges for lung cancer theranostics. Precision medicine in lung cancer can help us find the optimum treatment dose and time for a specific patient, which can advance the development of lung cancer therapeutics.
Collapse
Affiliation(s)
- Xiaoyong Guan
- Department of Laboratory Medicine, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Tian Qin
- Department of Oncology, The First Affiliated Hospital of Guangxi University of Science and Technology, Liuzhou, China
| | - Tao Qi
- Oncology Hematology Department, Xijing 986 Hospital, Fourth Military Medical University, Xi’an, China
| |
Collapse
|
4
|
Liu G, Wu S, Liu W, Gao G, Zhang Y, Gao E, Zhu M. Three novel spiral chain Nd (III) Eu (III) Sm (III)complexes bridged by 1,1 '(1,4‐phenylene‐bis [methylene])‐bis (pyridine‐3‐carboxylicaicd): Synthesis, structural characterization, and antitumor activity. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Gongchi Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Shuangyan Wu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Wei Liu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Guoxu Gao
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Ying Zhang
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
| | - Enjun Gao
- School of Chemical Engineering University of Science and Technology Liaoning Anshan China
| | - Mingchang Zhu
- International Key Laboratory of Liaoning Inorganic Molecule‐Based Chemical and Department of Coordination Chemistry Shenyang University of Chemical Technology Shenyang China
- Key Laboratory of Resource Chemical Technology and Materials, (Ministry of Education) Shenyang University Chemical Technology Shenyang China
| |
Collapse
|
5
|
Hu X, Zhang Q, Dai X, Sun J, Gao F. Dual-Emission Carbonized Polymer Dots for Ratiometric pH Sensing, pH-Dependent Generation of Singlet Oxygen, and Imaging-Guided Dynamics Monitoring of Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2021; 4:7663-7672. [PMID: 35006696 DOI: 10.1021/acsabm.1c00892] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The pH environment in cancer cells has been demonstrated to display vital influences on the therapeutic effect of photodynamic therapy (PDT). It is very interesting to develop pH-responsive probes for simultaneous pH sensing and dynamics monitoring of the effects of PDT, and therefore assessing the correlation between them. In this study, a multifunctional fluorescence probe, dual-emission carbonized polymer dot (CPD) in blue and red regions, which uses ethylene imine polymer (PEI) and 4,4',4″,4‴-(porphine-5, 10, 15, 20-tetrayl) tetrakis (benzoic acid) (TCPP) as precursors through a one-step hydrothermal amide reaction, has been designed for ratiometric pH sensing, generating pH-dependent 1O2 for PDT of cancer cells, and investigating the dynamics effects of PDT through pH-guided imaging. The prepared CPDs were successfully used for ratiometric pH response, pH-dependent generation of 1O2, and dynamics monitoring PDT in HeLa cells. This study may provide an alternative strategy to prepare CPD-based theranostic integrated nanoprobes for PDT through the rational design of precursors.
Collapse
Affiliation(s)
- Xiaoxiao Hu
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Qiang Zhang
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Xiaomei Dai
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Junyong Sun
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| | - Feng Gao
- Laboratory of Functionalized Molecular Solids, Ministry of Education, Anhui Key Laboratory of Chemo/Biosensing, Laboratory of Biosensing and Bioimaging (LOBAB), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, P. R. China
| |
Collapse
|
6
|
Liu D, Wu J, Zhu H, Zhu X, Jin Y, Yu Y, Zhang X. Treatment of microvascular invasion in hepatocellular carcinoma with drug-loaded nanocomposite platform under synergistic effect of magnetic field/near-infrared light. J Biomed Mater Res B Appl Biomater 2021; 110:712-724. [PMID: 34664385 DOI: 10.1002/jbm.b.34950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 09/18/2021] [Accepted: 09/22/2021] [Indexed: 12/26/2022]
Abstract
Despite progress in clinical treatment, microvascular invasion (MVI) remains a major factor for frequent recurrence and metastasis of hepatocellular carcinoma (HCC) after liver resection and surgery. Thus, this study constructed a target nanoplatform (αCD97-USPIO-Au-DDP) with magnetic field/near-infrared (NIR) light response using ultrasmall superparamagnetic iron oxide-gold nanoporous spheres (USPIO-Au) as multifunctional nanocarrier. Anticancer drug cisplatin (DDP) was loaded, and specifically expressed CD97 protein in MVI was taken as the therapeutic target. The αCD97-USPIO-Au-DDP showed favorable photothermal and stable properties under the NIR light at 808 nm wavelength. As suggested by in vitro and in vivo research, this composite nanopreparation could effectively reduce damage to normal organs and showed good biocompatibility. Excellent magnetic targeting function of nanocarrier and modification of αCD97 strengthened accumulation of composite nanodrug in tumor to inhibit tumor growth. This system may have important ramifications for treatment of MVI in HCC.
Collapse
Affiliation(s)
- Daren Liu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jinhong Wu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Huanbing Zhu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiuliang Zhu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yun Jin
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yuanquan Yu
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Zhang
- Department of General Surgery, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|