1
|
Huang C, Zhang X, Li X, Zhao H. β-Cyclodextrin enhanced bioavailability of petroleum hydrocarbons in industrially contaminated soil: A phytoremediation field study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:2348-2355. [PMID: 39154232 DOI: 10.1080/15226514.2024.2389563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
Low remediation efficiency due to low bioavailability is a primary restrictive factor for phytoremediation applications. Specifically, this investigation examines whether Suaeda heteroptera Kitagawa (S. heteroptera) can be used in combination with β-cyclodextrin (β-CD) to remediate contaminated site. The study was conducted on the growth response of S. heteroptera, bioavailability and dissipation of petroleum hydrocarbons (PHs) in soil under the influence of β-CD Our preliminary studies confirmed that β-CD is effective in increasing the biomass and height of plants. The presence of β-CD could dramatically elevate polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in S. heteroptera. Moreover, a remarkable positive correlation between PHs levels in roots with the dosage of β-CD and a negative correlation between the PHs levels in roots with KOW of PHs have been observed. The dissipation of n-alkanes was estimated to be 38.73-62.27%, and the dissipation of PAHs was 36.59-60.10%. In addition, the dissipation behavior of n-alkanes and PAHs was well agreement with the first-order kinetic model. These results display that applying β-CD accelerated the desorption process of PHs from soil and promoted the absorption process of PHs onto the root epidermis. The enhancement of phytoremediation was achieved by increasing the bioavailability of PHs.
Collapse
Affiliation(s)
- Chaoyang Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Xiaonuo Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Xintong Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, China
| |
Collapse
|
2
|
Chen R, Zhao Z, Xu T, Jia X. Microbial Consortium HJ-SH with Very High Degradation Efficiency of Phenanthrene. Microorganisms 2023; 11:2383. [PMID: 37894041 PMCID: PMC10609217 DOI: 10.3390/microorganisms11102383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023] Open
Abstract
Phenanthrene (PHE) is one of the model compounds of polycyclic aromatic hydrocarbons (PAHs). In this study, a natural PHE-degrading microbial consortium, named HJ-SH, with very high degradation efficiency was isolated from soil exposed to long-term PHE contamination. The results of GC analysis showed that the consortium HJ-SH degraded 98% of 100 mg/L PHE in 3 days and 93% of 1000 mg/L PHE in 5 days, an efficiency higher than that of any other natural consortia, and even most of the engineered strains and consortia reported so far. Seven dominating strains were isolated from the microbial consortium HJ-SH, named SH-1 to SH-7, which were identified according to morphological observation and 16S rDNA sequencing as Pseudomonas sp., Stenotrophomonas sp., Delftia sp., Pseudomonas sp., Brevundimonas sp., Curtobacterium sp., and Microbacterium sp., respectively. Among all the seven single strains, SH-4 showed the strongest PHE degradation ability, and had the biggest degradation contribution. However, it is very interesting that the microbial consortium can hold its high degradation ability only with the co-existence of all these seven single strains. Moreover, HJ-SH exhibited a very high tolerance for PHE, up to 4.5 g/L, and it can degrade some other typical organic pollutants such as biphenyl, anthracene, and n-hexadecane with the degradation ratios of 93%, 92% and 70%, respectively, under 100 mg/L initial concentration in 5 days. Then, we constructed an artificial consortium HJ-7 consisting of the seven single strains, SH-1 to SH-7. After comparing the degradation ratios, cell growth, and relative degradation rates, it was concluded that the artificial consortium HJ-7 with easier reproducibility, better application stability, and larger room for modification can largely replace the natural consortium HJ-SH. In conclusion, this research provided novel tools and new insights for the bioremediation of PHE and other typical organic pollutants using microbial consortia.
Collapse
Affiliation(s)
- Rui Chen
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
| | - Zhenhua Zhao
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
| | - Tao Xu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
| | - Xiaoqiang Jia
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; (R.C.); (Z.Z.); (T.X.)
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (MOE), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| |
Collapse
|
3
|
Wang M, Liu C, Zhang J, Xiao K, Pan T. Synergistic effects of a functional bacterial consortium on enhancing phenanthrene biodegradation and counteracting rare earth biotoxicity in liquid and slurry systems. Lett Appl Microbiol 2022; 75:1515-1525. [PMID: 36000244 DOI: 10.1111/lam.13817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/06/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022]
Abstract
The biodegradation of polycyclic aromatic hydrocarbons (PAHs) by microorganisms in the environment is often inhibited by coexisting metal ions. The aim of this work is to study a bacterial consortium for enhancing phenanthrene biodegradation under the inhibition effect of the rare earth (RE) ions Ce3+ and Y3+ . This bacterial consortium was composed of two bacteria, namely, the RE-adsorbing Bacillus subtilis MSP117 and the phenanthrene-degrading Moraxella osloensis CFP312. Ce3+ and Y3+ at the concentration of 1.15 mmol L-1 inhibited CFP312 from degrading phenanthrene but not glucose. Using glucose as a co-substrate could promote the proliferation of CFP312 but decreased phenanthrene degradation. Adsorption experiments and electron microscopy imaging showed that CFP312 had no RE ions adsorption capacity for RE ions and that RE elements could not be observed on its cell surfaces. MSP117 could adsorb 0.14 and 0.12 mmol g-1 wet cells of Ce3+ and Y3+ in aqueous solution, respectively, thus demonstrating considerable adsorption capacity. The MSP117 cell surface immobilized part of the free RE ions and reduced their bioaccessibility, thereby alleviating their biotoxic effect on phenanthrene degradation by CFP312. In liquid and slurry systems, glucose, which was used as the co-substrate of the bacterial consortium, must be kept at a low level to avoid the catabolism repression of phenanthrene degradation by CFP312.
Collapse
Affiliation(s)
- Meini Wang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Congyang Liu
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jiameng Zhang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Kun Xiao
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Tao Pan
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
4
|
Wang Y, Zhuang JL, Lu QQ, Cui CZ, Liu YD, Ni BJ, Li W. Halophilic Martelella sp. AD-3 enhanced phenanthrene degradation in a bioaugmented activated sludge system through syntrophic interaction. WATER RESEARCH 2022; 218:118432. [PMID: 35472747 DOI: 10.1016/j.watres.2022.118432] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/21/2022] [Accepted: 04/03/2022] [Indexed: 06/14/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of common recalcitrant pollutant in industrial saline wastewater that raised significant concerns, whereas traditional activated sludge (AS) has limited tolerance to high salinity and PAHs toxicity, restricting its capacity to degrade PAHs. It is therefore urgent to develop a bioaugmented sludge (BS) system to aid in the effective degradation of these types of compounds under saline condition. In this study, a novel bioaugmentation strategy was developed by using halophilic Martelella sp. AD-3 for effectively augmented phenanthrene (PHE) degradation under 3% salinity. It was found that a 0.5∼1.5% (w/w) ratio of strain AD-3 to activated sludge was optimal for achieving high PHE degradation activity of the BS system with degradation rates reaching 2.2 mg⋅gVSS-1⋅h-1, nearly 25 times that of the AS system. Although 1-hydroxy-2-naphthoic acid (1H2N) was accumulated obviously, the mineralization of PHE was more complete in the BS system. Reads-based metagenomic coupled metatranscriptomic analysis revealed that the expression values of ndoB, encoding a dioxygenase associated with PHE ring-cleavage, was 5600-fold higher in the BS system than in the AS system. Metagenome assembly showed the members of the Corynebacterium and Alcaligenes genera were abundant in the strain AD-3 bioaugmented BS system with expression of 10.3±1.8% and 1.9±0.26%, respectively. Moreover, phdI and nahG accused for metabolism of 1H2N have been annotated in both above two genera. Degradation assays of intermediates of PHE confirmed that the activated sludge actually possessed considerable degradation capacity for downstream intermediates of PHE including 1H2N. The degradation capacity ratio of 1H2N to PHE was 87% in BS system, while it was 26% in strain AD-3. These results indicated that strain AD-3 contributed mainly in transforming PHE to 1H2N in BS system, while species in activated sludge utilized 1H2N as substrate to grow, thus establishing a syntrophic interaction with strain AD-3 and achieving the complete mineralization of PHE. Long-term continuous experiment confirmed a stable PHE removal efficiency of 93% and few 1H2N accumulation in BS SBR system. This study demonstrated an effective bioaugmented strategy for the bioremediation of saline wastewater containing PAHs.
Collapse
Affiliation(s)
- Yu Wang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Jin-Long Zhuang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Qing-Qing Lu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China
| | - Chang-Zheng Cui
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Yong-Di Liu
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, Australia.
| | - Wei Li
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai, China; State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
5
|
Pan T, Liu C, Wang M, Zhang J. Interfacial biodegradation of phenanthrene in bacteria-carboxymethyl cellulose-stabilized Pickering emulsions. Appl Microbiol Biotechnol 2022; 106:3829-3836. [PMID: 35536403 DOI: 10.1007/s00253-022-11952-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 11/27/2022]
Abstract
The limited bioavailability of PAHs in non-aqueous phase liquid (NAPL) limits their degradation. The biodegradation of phenanthrene in n-tetradecane by hydrophilic bacterium Moraxella sp. CFP312 was studied with the assistance of two polymers, chitosan and carboxymethyl cellulose (CMC). Both chitosan and CMC improved the cell hydrophobicity of CFP312 and increased the contact angle of CFP312 cells from 30.4 to 78.5 and 88.5, respectively. However, CMC increased the degradation ratio of phenanthrene from 45 to nearly 100%, while chitosan did not cause any improvement. We found that CMC was more effective than chitosan in promoting CFP312 to stabilize Pickering emulsion. In the bacteria-CMC complex system, oil was dispersed into small droplets to obtain a high emulsification index and large specific surface area. Moreover, according to the microscopic image of the bacteria-CMC emulsion droplet, we observed that the droplet surface was tightly covered by the CFP312 cells. Therefore, CFP312 cells joined with CMC can utilize phenanthrene in oil phase at the oil-water interface. This study will offer a new strategy for effective microbial degradation of hydrophobic compounds in NAPLs by hydrophilic bacteria. KEY POINTS: • Biodegradation of phenanthrene in Pickering emulsions • Pickering emulsions stabilized by hydrophilic CFP312 joined with CMC. • Phenanthrene was degraded by CFP312 at oil-water interface.
Collapse
Affiliation(s)
- Tao Pan
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China.
| | - Congyang Liu
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Meini Wang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| | - Jiameng Zhang
- Jiangxi Province Key Laboratory of Mining and Metallurgy Environmental Pollution Control, and School of Resource and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou, 341000, China
| |
Collapse
|
6
|
Lin X, Bai Y, Jiang Q. Precise Fabrication of Folic Acid-Targeted Therapy on Metformin Encapsulated β-Cyclodextrin Nanomaterials for Treatment of Lung Cancer. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|