1
|
Herrera Pérez GM, Castellano LE, Ramírez Valdespino CA. Trichoderma and Mycosynthesis of Metal Nanoparticles: Role of Their Secondary Metabolites. J Fungi (Basel) 2024; 10:443. [PMID: 39057328 PMCID: PMC11278454 DOI: 10.3390/jof10070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.
Collapse
Affiliation(s)
- Guillermo M. Herrera Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico;
| | - Laura E. Castellano
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Loma del Bosque #103, Lomas del Campestre, León de los Aldama 37150, Gto., Mexico;
| | - Claudia A. Ramírez Valdespino
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico
| |
Collapse
|
2
|
Saravanakumar K, Sathiyaseelan A, Manivasagan P, Zhang X, Jeong MS, Jang ES, Wang MH. Multifunctional chitosan-bimetallic nanocarrier deliver 5-fluorouracil for enhanced treatment of pancreatic and triple-negative breast cancer. Int J Biol Macromol 2024; 259:129165. [PMID: 38163501 DOI: 10.1016/j.ijbiomac.2023.129165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/03/2024]
Abstract
This work aimed to prepare multifunctional aptamer-conjugated, photothermally responsive 5-fluorouracil (5fu)-loaded chitosan-bimetallic (Au/Pd) nanoparticles (APT-CS-5fu-Au/Pd NPs) for improved cytotoxicity in two cancer cell lines (PANC-1 and MDA-MD 231). The CS-5fu-Au/Pd NPs were polydispersed with a size of 34.43 ± 1.59 nm. FTIR analysis indicated the presence of CS, 5fu in CS-5fu-Au/Pd NPs. The 2 theta degrees in CS-5fu-Au/Pd NPs accounted for CS and Au/Pd. Additionally, AGE revealed the conjugation of APT in CS-5fu-Au/Pd NPs. The APT-CS-5fu-Au/Pd NPs (180 μg/mL) with NIR treatment increased the temperature to >50 °C. The optimized 5fu input was 0.075 % in CS-5fu-Au/Pd NPs, exhibiting a hydrodynamic size of 112.96 ± 17.23 nm, DEE of 64.2 ± 3.77 %, and DLE of 11.1 ± 0.65 %. A higher level of 5fu release (69.8 ± 2.78 %) was observed under pH 5.4 at 74 h. In conclusion, NIR-APT-CS-5fu-Au/Pd NPs did not cause toxicity to RBC and Egg CAM, but increased cytotoxicity in MDA-MB 231 and PANC-1 cells by triggering oxidative stress-mediated cell death.
Collapse
Affiliation(s)
- Kandasamy Saravanakumar
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Panchanathan Manivasagan
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea.
| | - Xin Zhang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| | - Myeong Seon Jeong
- Chuncheon Center, Korea Basic Science Institute, Chuncheon, South Korea.
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Gumi, Gyeongbuk 730-701, Republic of Korea.
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergence, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
3
|
Tomah AA, Zhang Z, Alamer ISA, Khattak AA, Ahmed T, Hu M, Wang D, Xu L, Li B, Wang Y. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2475. [PMID: 37686983 PMCID: PMC10490099 DOI: 10.3390/nano13172475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, Al-Amarah 62001, Iraq
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| | - Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, Al-Amarah 62001, Iraq
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China;
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou 310020, China;
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| |
Collapse
|
4
|
Functionalized Silver and Gold Nanomaterials with Diagnostic and Therapeutic Applications. Pharmaceutics 2022; 14:pharmaceutics14102182. [PMID: 36297620 PMCID: PMC9609291 DOI: 10.3390/pharmaceutics14102182] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/16/2022] Open
Abstract
The functionalization of nanomaterials with suitable capping ligands or bioactive agents is an interesting strategy in designing nanosystems with suitable applicability and biocompatibility; the physicochemical and biological properties of these nanomaterials can be highly improved for biomedical applications. In this context, numerous explorations have been conducted in the functionalization of silver (Ag) and gold (Au) nanomaterials using suitable functional groups or agents to design nanosystems with unique physicochemical properties such as excellent biosensing capabilities, biocompatibility, targeting features, and multifunctionality for biomedical purposes. Future studies should be undertaken for designing novel functionalization tactics to improve the properties of Au- and Ag-based nanosystems and reduce their toxicity. The possible release of cytotoxic radicals or ions, the internalization of nanomaterials, the alteration of cellular signaling pathways, the translocation of these nanomaterials across the cell membranes into mitochondria, DNA damages, and the damage of cell membranes are the main causes of their toxicity, which ought to be comprehensively explored. In this study, recent advancements in diagnostic and therapeutic applications of functionalized Au and Ag nanomaterials are deliberated, focusing on important challenges and future directions.
Collapse
|
5
|
Microwave assisted green synthesis of Fe@Au core–shell NPs magnetic to enhance olive oil efficiency on eradication of helicobacter pylori (life preserver). ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103685] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
6
|
Akbar M, Haroon U, Ali M, Tahir K, Chaudhary HJ, Munis MFH. Mycosynthesized Fe
2
O
3
nanoparticles diminish brown rot of apple whilst maintaining composition and pertinent organoleptic properties. J Appl Microbiol 2022; 132:3735-3745. [DOI: 10.1111/jam.15483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 02/04/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Mahnoor Akbar
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Urooj Haroon
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Musrat Ali
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Kinza Tahir
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | - Hassan Javed Chaudhary
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid‐i‐Azam University Islamabad Pakistan
| | | |
Collapse
|
7
|
Mariadoss AVA, Saravanakumar K, Sathiyaseelan A, Karthikkumar V, Wang MH. Smart drug delivery of p-Coumaric acid loaded aptamer conjugated starch nanoparticles for effective triple-negative breast cancer therapy. Int J Biol Macromol 2022; 195:22-29. [PMID: 34861273 DOI: 10.1016/j.ijbiomac.2021.11.170] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/23/2021] [Indexed: 12/12/2022]
Abstract
The nano-drug delivery system utilizing the ligand functionalized nanoparticles have a tremendous application in cancer therapeutics. The present study was aimed to fabricate the p-Coumaric acid-loaded aptamer (ligand) conjugated starch nanoparticles (Apt-p-CA-AStNPs) for effective treatment of triple-negative breast cancer (MDA-MB-231). The FT-IR spectrum showed the presence of functional groups associated with para-Coumaric acid (p-CA) and amino starch (AS) in p-CA-AStNPs. Further, the conjugation of aptamer in p-CA-AStNPs was confirmed by agarose gel electrophoresis. Transmission electron microscopic analysis revealed that the synthesized Apt-p-CA-AStNPs were less agglomerated. The zeta size analyzer displayed the average particle size of 218.97 ± 3.07 nm with ȥ-potential -29.2 ± 1.35 mV, and PDI 0.299 ± 0.05 for Apt-p-CA-AStNPs. The drug encapsulation and loading efficiencies were 80.30 ± 0.53% and 10.35 ± 0.85% respectively for Apt-p-CA-AStNPs. Apt-p-CA-AStNPs showed a rapid and bursting release in the initial five hours of the experiment in pH 5.4. A significant change was found in their cytotoxic efficacy between the samples: p-CA, p-CA-AStNPs, and Apt-p-CA-AStNPs. Among the tested samples, Apt-p-CA-AStNPs caused higher cytotoxicity in MDA-MB-231 cells through ROS regulation, nuclear damage, mitochondrial membrane potential, and apoptosis-related protein expressions. Overall, these results proved that Apt-p-CA-AStNPs were efficiently inhibited the MDA-MB-231 cells by regulating apoptosis.
Collapse
Affiliation(s)
| | - Kandasamy Saravanakumar
- Department of Bio-Health Convergences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Anbazhagan Sathiyaseelan
- Department of Bio-Health Convergences, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Venkatachalam Karthikkumar
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, UAE University, Al Ain, United Arab Emirates
| | - Myeong-Hyeon Wang
- Department of Bio-Health Convergences, Kangwon National University, Chuncheon 200-701, Republic of Korea.
| |
Collapse
|
8
|
Mobaraki F, Momeni M, Taghavizadeh Yazdi ME, Meshkat Z, Silanian Toosi M, Hosseini SM. Plant-derived synthesis and characterization of gold nanoparticles: Investigation of its antioxidant and anticancer activity against human testicular embryonic carcinoma stem cells. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.09.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Application of Gold Nanoparticle-Based Materials in Cancer Therapy and Diagnostics. CHEMENGINEERING 2021. [DOI: 10.3390/chemengineering5040069] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Several metal nanoparticles have been developed for medical application. While all have their benefits, gold nanoparticles (AuNPs) are ideal in cancer therapy and diagnosis as they are chemically inert and minimally toxic. Several studies have shown the potential of AuNPs in the therapeutic field, as photosensitizing agents in sonochemical and photothermal therapy and as drug delivery, as well as in diagnostics and theranostics. Although there is a significant number of reviews on the application of AuNPs in cancer medicine, there is no comprehensive review on their application both in therapy and diagnostics. Therefore, considering the high number of studies on AuNPs’ applications, this review summarizes data on the application of AuNPs in cancer therapy and diagnostics. In addition, we looked at the influence of AuNPs’ shape and size on their biological properties. We also present the potential use of hybrid materials based on AuNPs in sonochemical and photothermal therapy and the possibility of their use in diagnostics. Despite their potential, the use of AuNPs and derivatives in cancer medicine still has some limitations. In this review, we provide an overview of the biological, physicochemical, and legal constraints on using AuNPs in cancer medicine.
Collapse
|