1
|
Zhang X, Ren X, Han X, Anjum R, Liang W, Tang Y. Effects of polysaccharides on the structure, functionality, emulsion stability and rheological properties of soybean meal hydrolysate-proanthocyanidin complexes. Int J Biol Macromol 2024; 293:139204. [PMID: 39743094 DOI: 10.1016/j.ijbiomac.2024.139204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
In this study, the structure, functionality, physicochemical property, emulsion storage stability, and rheological properties of soybean meal hydrolysate-proanthocyanidin (SMH-PC) conjugates in ternary complex with glucan, sodium alginate, or soybean polysaccharides were investigated. Following complexing, the proteins unfolded and their disordered structures positively promoted the emulsifying properties of ternary complexes. The SMH-PC-glucan complex showed the best antioxidant activity and the highest emulsifying activity index (94.11 m2·g-1) and stability index (378.09 min). Moreover, the SMH-PC-glucan complex emulsion exhibited the best emulsion stability, including the smallest particle size and good storage stability. These findings demonstrate the potential of using modified SMHs as emulsifiers to increase the value of soybean meal.
Collapse
Affiliation(s)
- Xiaoying Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiuxiu Ren
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuemei Han
- Tianjin Key Laboratory of Edible Probiotics, Tianjin InnoOrigin Biological Biotechnology Co., Ltd., Tianjin 300301, China
| | - Rameesha Anjum
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wu Liang
- Tianjin Key Laboratory of Edible Probiotics, Tianjin InnoOrigin Biological Biotechnology Co., Ltd., Tianjin 300301, China.
| | - Yao Tang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Wiśniewski P, Chajęcka-Wierzchowska W, Zadernowska A. High-Pressure Processing Influences Antibiotic Resistance Gene Transfer in Listeria monocytogenes Isolated from Food and Processing Environments. Int J Mol Sci 2024; 25:12964. [PMID: 39684674 DOI: 10.3390/ijms252312964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
The study aimed to assess the high-pressure processing (HPP) impact on antibiotic resistance gene transfer in L. monocytogenes from food and food processing environments, both in vitro (in microbiological medium) and in situ (in carrot juice), using the membrane filter method. Survival, recovery, and frequency of antibiotic resistance gene transfer analyses were performed by treating samples with HPP at different pressures (200 MPa and 400 MPa). The results showed that the higher pressure (400 MPa) had a significant effect on increasing the transfer frequency of genes such as fosX, encoding fosfomycin resistance, and tet_A1, tet_A3, tetC, responsible for tetracycline resistance, both in vitro and in situ. In contrast, the Lde gene (the gene encoding ciprofloxacin resistance) was not transferred under any conditions. In the food matrix (carrot juice), greater variability in results was observed, suggesting that food matrices may have a protective effect on bacteria and modify HPP efficacy. In general, an increase in MIC values for antibiotics was noted in transconjugants compared to donors. Genotypic analysis of transconjugants showed differences in genetic structure, especially after exposure to 400 MPa pressure, indicating genotypic changes induced by pressure stress. The study confirms the possibility of antibiotic resistance genes transfer in the food environment, even from strains showing initial susceptibility to antibiotics carrying so-called silent antibiotic resistance genes, highlighting the public health risk of the potential spread of antibiotic-resistant strains through the food chain. The findings suggest that high-pressure processing can increase and decrease the frequency of resistance gene transfer depending on the strain, antibiotic combination, and processing conditions.
Collapse
Affiliation(s)
- Patryk Wiśniewski
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Wioleta Chajęcka-Wierzchowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| | - Anna Zadernowska
- Department of Food Microbiology, Meat Technology and Chemistry, Faculty of Food Science, University of Warmia and Mazury, Plac Cieszyński 1, 10-726 Olsztyn, Poland
| |
Collapse
|
3
|
Nemli E, Ozkan G, Gultekin Subasi B, Cavdar H, Lorenzo JM, Zhao C, Capanoglu E. Interactions between proteins and phenolics: effects of food processing on the content and digestibility of phenolic compounds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2535-2550. [PMID: 38318731 DOI: 10.1002/jsfa.13275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/03/2023] [Accepted: 12/29/2023] [Indexed: 02/07/2024]
Abstract
Phenolic compounds have recently become one of the most interesting topics in different research areas, especially in food science and nutrition due to their health-promoting effects. Phenolic compounds are found together with macronutrients and micronutrients in foods and within several food systems. The coexistence of phenolics and other food components can lead to their interaction resulting in complex formation. This review article aims to cover the effects of thermal and non-thermal processing techniques on the protein-phenolic interaction especially focusing on the content and digestibility of phenolics by discussing recently published research articles. It is clear that the processing conditions and individual properties of phenolics and proteins are the most effective factors in the final content and intestinal fates of phenolic compounds. Besides, thermal and non-thermal treatments, such as high-pressure processing, pulsed electric field, cold plasma, ultrasonication, and fermentation may induce alterations in those interactions. Still, new investigations are required for different food processing treatments by using a wide range of food products to enlighten new functional and healthier food product design, to provide the optimized processing conditions of foods for obtaining better quality, higher nutritional properties, and health benefits. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Elifsu Nemli
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Gulay Ozkan
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Busra Gultekin Subasi
- Center for Innovative Food (CiFOOD), Department of Food Science, Aarhus University, Aarhus, Denmark
| | - Humeyra Cavdar
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Parque Tecnológico de Galicia, Ourense, Spain
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Türkiye
| |
Collapse
|
4
|
Yang H, Wang S, Yang L, Liu H. Preparations, application of polysaccharide-protein nanoparticles and their assembly at the oil-water interface. Food Sci Biotechnol 2024; 33:13-22. [PMID: 38186629 PMCID: PMC10767157 DOI: 10.1007/s10068-023-01397-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 01/09/2024] Open
Abstract
With the development of nanotechnology, nanoparticles have played an important role in pharmaceuticals, foods and materials, in particular, protein/polysaccharide based composite nanoparticles have received attention from researchers for safety and green production. This paper summarized in detail the preparation methods, applications of protein/polysaccharide nanoparticles (PPNPs) in recent years, especially the mechanism of stabilizing the oil-water interface. Currently, the polysaccharides applied are more traditional, such as chitosan, pectin and carboxymethyl cellulose, so there is still a lot of room for the development of raw materials that can be used to prepare PPNPs. Based on this, we also proposed three promising polysaccharides: seaweed polysaccharide, lycium barbarum polysaccharide and lactobacillus exopolysaccharides, describing their characteristics as well as their application prospects, this article can serve as a reference for interested researchers.
Collapse
Affiliation(s)
- Hui Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Shengnan Wang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| | - He Liu
- College of Food Science and Technology, Bohai University, A203 Food Science Building, 19 Keji Road, Jinzhou, 121013 Liaoning China
| |
Collapse
|
5
|
Xu X, Li L, Ma C, Li D, Yang Y, Bian X, Fan J, Zhang N, Zuo F. Soy protein isolate-citrus pectin-gallic acid ternary composite high internal phase Pickering emulsion for delivery of β-carotene: Physicochemical, structural and digestive properties. Food Res Int 2023; 169:112910. [PMID: 37254348 DOI: 10.1016/j.foodres.2023.112910] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023]
Abstract
The structure properties, stability and β-carotene slow-release mechanism of soybean protein isolate-citrus pectin-gallic acid complex (SPI-CP-GA) stabilized high-internal phase Pickering emulsion (HIPPE) were investigated. The results showed that compared with the SPI-CP binary complex, the turbidity of the SPI-CP-GA ternary complex increased from 2.174 ± 0.001 to 3.027 ± 0.001, the surface wettability was increased, the infrared peaks was blue-shifted, changed from hydrophilic to hydrophobic, and the equilibrium interfacial tension of particles increased from 10.77 ± 0.02 mN/m to 13.46 ± 0.03 mN/m, the complex was more stable. When the GA was 2.0 mg/mL, the encapsulation efficiency of β-carotene was higher. With increased GA concentration and oil phase volume fraction (φ), the apparent viscosity and viscoelastic behavior of HIPPE performed well, forming a stable gel network structure. After 30 days of storage, there was no oil separation in the sample group with GA concentration of 2.0 mg/mL and φ = 0.7, and the stability was strong. After gastrointestinal digestion, the particle size of the HIPPE decreased from 13.51 ± 0.86 μm to 7.70 ± 0.68 μm, the free fatty acid (FFA) release rate was 22.03%, and the bioaccessibility of β-carotene was 6.67 ± 0.19%, and the sustained-release effect was obvious. These results indicated that the SPI-CP-GA ternary complex is a potential stabilizer for HIPPE, and providing theoretical guidance for the design of protein-polysaccharide-polyphenol stabilized HIPPE.
Collapse
Affiliation(s)
- Xinyu Xu
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China; Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China
| | - Lin Li
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China
| | - Chunmin Ma
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Dan Li
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China
| | - Yang Yang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Xin Bian
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Jing Fan
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China
| | - Na Zhang
- Harbin University of Commerce School of Food Engineering, Harbin, Heilongjiang 150076, China.
| | - Feng Zuo
- Heilongjiang Bayi Agricultural University Food College, Daqing, Heilongjiang 163319, China; Heilongjiang Bayi Agricultural University National Cereals Engineering Technology Research Center, Daqing, Heilongjiang 163319, China.
| |
Collapse
|
6
|
Xie J, Li Y, Qu X, Kang Z. Effects of combined high pressure and temperature on solubility, foaming, and rheological properties of soy
11S
globulin. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing‐Jie Xie
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| | - Yan‐Ping Li
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Food Technologies Faculty Sumy National Agrarian University Sumy Ukraine
| | - Xiao‐Qing Qu
- School of Food Science Henan Institute of Science and Technology Xinxiang China
- Food Technologies Faculty Sumy National Agrarian University Sumy Ukraine
| | - Zhuang‐Li Kang
- School of Food Science Henan Institute of Science and Technology Xinxiang China
| |
Collapse
|
7
|
Shen P, Zhao M, Zhou F. Design of soy protein/peptide-based colloidal particles and their role in controlling the lipid digestion of emulsions. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Designing delivery systems for functional ingredients by protein/polysaccharide interactions. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.12.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
Mo H, Li Q, Liang J, Ou J, Jin B. Investigation of physical stability of Pickering emulsion based on soy protein/β‐glucan/coumarin ternary complexes under subcritical water condition. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15306] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Huanping Mo
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Qiyong Li
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Jiaru Liang
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Junjie Ou
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| | - Bei Jin
- School of Food & Science Engineering Lingnan Normal University Zhanjiang 524048 China
| |
Collapse
|
10
|
Avelar Z, Vicente AA, Saraiva JA, Rodrigues RM. The role of emergent processing technologies in tailoring plant protein functionality: New insights. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|