1
|
Dolpatcha S, Phong HX, Thanonkeo S, Klanrit P, Yamada M, Thanonkeo P. Adaptive laboratory evolution under acetic acid stress enhances the multistress tolerance and ethanol production efficiency of Pichia kudriavzevii from lignocellulosic biomass. Sci Rep 2023; 13:21000. [PMID: 38017261 PMCID: PMC10684600 DOI: 10.1038/s41598-023-48408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/26/2023] [Indexed: 11/30/2023] Open
Abstract
Second-generation bioethanol production using lignocellulosic biomass as feedstock requires a highly efficient multistress-tolerant yeast. This study aimed to develop a robust yeast strain of P. kudriavzevii via the adaptive laboratory evolution (ALE) technique. The parental strain of P. kudriavzevii was subjected to repetitive long-term cultivation in medium supplemented with a gradually increasing concentration of acetic acid, the major weak acid liberated during the lignocellulosic pretreatment process. Three evolved P. kudriavzevii strains, namely, PkAC-7, PkAC-8, and PkAC-9, obtained in this study exhibited significantly higher resistance toward multiple stressors, including heat, ethanol, osmotic stress, acetic acid, formic acid, furfural, 5-(hydroxymethyl) furfural (5-HMF), and vanillin. The fermentation efficiency of the evolved strains was also improved, yielding a higher ethanol concentration, productivity, and yield than the parental strain, using undetoxified sugarcane bagasse hydrolysate as feedstock. These findings provide evidence that ALE is a practical approach for increasing the multistress tolerance of P. kudriavzevii for stable and efficient second-generation bioethanol production from lignocellulosic biomass.
Collapse
Affiliation(s)
- Sureeporn Dolpatcha
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Huynh Xuan Phong
- Department of Microbial Biotechnology, Institute of Food and Biotechnology, Can Tho University, Can Tho, 900000, Vietnam
| | - Sudarat Thanonkeo
- Walai Rukhavej Botanical Research Institute, Mahasarakham University, Maha Sarakham, 44150, Thailand
| | - Preekamol Klanrit
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | - Pornthap Thanonkeo
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Fermentation Research Center for Value Added Agricultural Products (FerVAAPs), Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
2
|
Synergistic effects of inhibitors and osmotic stress during high gravity bioethanol production from steam-exploded lignocellulosic feedstocks. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Chen Z, Chen X, Li Q, Zhou P, Zhao Z, Li B. Transcriptome Analysis Reveals Potential Mechanisms of L-Serine Production by Escherichia coli Fermentation in Different Carbon-Nitrogen Ratio Medium. Foods 2022; 11:2092. [PMID: 35885334 PMCID: PMC9318367 DOI: 10.3390/foods11142092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 12/10/2022] Open
Abstract
L-serine is an industrially valuable amino acid that is widely used in the food, cosmetics and pharmaceutical industries. In this study, transcriptome sequencing technology was applied to analyze the changes in gene expression levels during the synthesis of L-serine in Escherichia coli fermentation. The optimal carbon-nitrogen ratio for L-serine synthesis in E. coli was determined by setting five carbon-nitrogen ratios for shake flask fermentation. Transcriptome sequencing was performed on E. coli fermented in five carbon-nitrogen ratio medium in which a total of 791 differentially expressed genes (DEGs) were identified in the CZ4_vs_CZ1 group, including 212 upregulated genes and 579 downregulated genes. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of these DEGs showed that the effect of an altered carbon-nitrogen ratio on the fermentability of E. coli was mainly focused on metabolic pathways such as GABAergic synapse and the two-component system (TCS) in which the genes playing key roles were mainly gadB, gadA, glsA, glnA, narH and narJ. In summary, these potential key metabolic pathways and key genes were proposed to provide valuable information for improving glucose conversion during E. coli fermentation.
Collapse
Affiliation(s)
- Zheng Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Xiaojia Chen
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Qinyu Li
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Peng Zhou
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Zhijun Zhao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; (X.C.); (Q.L.)
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Z.C.); (P.Z.)
| |
Collapse
|