1
|
Kumrungsee N, Nobsathian S, Chumworathayee W, Phankaen P, Dunkhunthod B, Koul O, Saiyaitong C, Bullangpoti V. Effect of isolated compounds from Combretum trifoliatum on toxicity and detoxification enzymes in Nilaparvata lugens. Sci Rep 2025; 15:27. [PMID: 39747314 PMCID: PMC11696173 DOI: 10.1038/s41598-024-83351-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
The brown planthopper (BPH) Nilaparvata lugens (Stål) is a major insect pest of Oryza sativa that causes crop yield loss in tropical regions, including Thailand. In this study, the crude ethanolic extract of the leaves and branches of Combretum trifoliatum , its active isolated components, apigenin and camphor, and Finopril were tested for their ability to control the first to fifth instars of N. lugens. The C. trifoliatum crude extract and both allelochemicals showed insecticide potential (24 h-LC50 ~ 8.83-95.96 mg/L against each instar for crude extract), and their toxicity depended on the time of exposure. Camphor showed the higher efficacy (LD50 ~ 4.43 mg/L) and not different compared to Finopril. All plant compounds tested reduced carboxylesterase (CE) and glutathione-s-transferase (GST) activities. Camphor caused the greatest decreases in CE and GST activities after exposure, whereas apigenin induced a slight change in acetylcholinesterase activity. The results of the present study suggest that C. trifoliatum extract can be used as an insecticide to manage N. lugens populations.
Collapse
Affiliation(s)
- Nutchaya Kumrungsee
- Biology Department, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani, 12110, Thailand
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Saksit Nobsathian
- Nakhonsawan Campus, Mahidol University, Nakhonsawan, 60130, Thailand
| | - Worakawee Chumworathayee
- Biology Department, Faculty of Science and Technology, Rajamangala University of Technology, Thanyaburi, Pathumthani, 12110, Thailand
| | - Poonnanan Phankaen
- Valaya Alongkorn Rajabhat University under the Royal Patronage Sa kaeo, Valaya Alongkorn Rajabhat University Under the Royal Patronage, Pathum Thani, 13180, Thailand
| | - Benjawan Dunkhunthod
- Thai Traditional Medicine Program, Faculty of Nursing and Allied Health Sciences, Phetchaburi Rajabhat University, Phetchaburi, 76000, Thailand
| | - Opender Koul
- Insect Biopesticide Research Centre, 30 Parkash Nagar, Jalandhar, 144003, India
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Chatwadee Saiyaitong
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Vasakorn Bullangpoti
- Animal Toxicology and Physiology Speciality Research Unit, Zoology Department, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand.
| |
Collapse
|
2
|
Sun S, Chen W, Peng K, Chen X, Chen J. Characterization of a novel amidohydrolase with promiscuous esterase activity from a soil metagenomic library and its application in degradation of amide herbicides. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:20970-20982. [PMID: 38383926 PMCID: PMC10948491 DOI: 10.1007/s11356-024-32362-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/03/2024] [Indexed: 02/23/2024]
Abstract
Amide herbicides have been extensively used worldwide and have received substantial attention due to their adverse environmental effects. Here, a novel amidohydrolase gene was identified from a soil metagenomic library using diethyl terephthalate (DET) as a screening substrate. The recombinant enzyme, AmiH52, was heterologously expressed in Escherichia coli and later purified and characterized, with the highest activity occurring at 40 ℃ and pH 8.0. AmiH52 was demonstrated to have both esterase and amidohydrolase activities, which exhibited highly specific activity for p-nitrophenyl butyrate (2669 U/mg) and degrading activity against several amide herbicides. In particular, it displayed the strongest activity against propanil, with a high degradation rate of 84% at 8 h. A GC-MS analysis revealed that propanil was transformed into 3,4-dichloroaniline (3,4-DCA) during this degradation. The molecular interactions and binding stability were then analyzed by molecular docking and molecular dynamics simulation, which revealed that several key amino acid residues, including Tyr164, Trp66, Ala59, Val283, Arg58, His33, His191, and His226, are involved in the specific interactions with propanil. This study provides a function-driven screening method for amide herbicide hydrolase from the metagenomic libraries and a promising propanil-degrading enzyme (AmiH52) for potential applications in environmental remediation.
Collapse
Affiliation(s)
- Shengwei Sun
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | - Wanqi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kailin Peng
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xueyingzi Chen
- Key Laboratory of Food Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinju Chen
- School of Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK.
- Department of Materials, Loughborough University, Loughborough, LE11 3TU, UK.
| |
Collapse
|
3
|
Sraphet S, Javadi B. Computational analysis of carboxylesterase genes and proteins in non-pathogenic food bacterium Alicyclobacillus acidocaldarius: insights from proteogenomics. World J Microbiol Biotechnol 2023; 39:348. [PMID: 37855845 DOI: 10.1007/s11274-023-03805-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Over recent years, Alicyclobacillus acidocaldarius, a Gram-positive nonpathogenic rod-shaped thermo-acid-tolerant bacterium, has posed numerous challenges for the fruit juice industry. However, the bacterium's unique characteristics, particularly its nonpathogenic and thermophilic capabilities, offer significant opportunities for genetic exploration by biotechnologists. This study presents the computational proteogenomics report on the carboxylesterase (CE) enzyme in A. acidocaldarius, shedding light on structural and evolutional of CEs from this bacterium. Our analysis revealed that the average molecular weight of CEs in A. acidocaldarius was 41 kDa, with an isoelectric point around 5. The amino acid composition favored negative amino acids over positive ones. The aliphatic index and hydropathicity were approximately 88 and - 0.15, respectively. While the protein sequence showed no disulfide bonds in the CEs' structure, the presence of Cys amino acids was observed in the structure of CEs. Phylogenetic analysis presented more than 99% similarity between CEs, indicating their close evolutionary relationship. By applying homology modeling, the 3-dimensional structural models of the carboxylesterase were constructed, which with the help of structural conservation and solvent accessibility analysis highlighted key residues and regions responsible for enzyme stability and conformation. The specific patterns presented the total solvent accessibility of less than 25 (Å2) was in considerable position as well as Gly residues were noticeably have high accessibility to solvent in all structures. Ala was the more frequent amino acids in the conserved-SASA of carboxylesterases. Furthermore, unsupervised agglomerative hierarchical clustering based on solvent accessibility feature successfully clustered and even distinguished this enzyme from proteases from the same genome. These findings contribute to a deeper understanding of the nonpathogenic A. acidocaldarius carboxylesterase and its potential applications in biotechnology. Additionally, structural analysis of CEs would help to address potential solutions in fruit juice industry with utilization of computational structural biology.
Collapse
Affiliation(s)
- Supajit Sraphet
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Bagher Javadi
- Department of Sciences, Faculty of Science and Technology, Suan Sunandha Rajabhat University, Bangkok, 10300, Thailand.
| |
Collapse
|
4
|
Morellon-Sterling R, Bolivar JM, Fernandez-Lafuente R. Switch off/switch on of a cysteinyl protease as a way to preserve the active catalytic group by modification with a reversible covalent thiol modifier: Immobilization of ficin on vinyl-sulfone activated supports. Int J Biol Macromol 2022; 220:1155-1162. [PMID: 36037909 DOI: 10.1016/j.ijbiomac.2022.08.155] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/11/2022] [Accepted: 08/23/2022] [Indexed: 11/05/2022]
Abstract
The immobilization of ficin (a cysteinyl proteases) on vinyl sulfone agarose produced its almost full inactivation. It was observed that the incubation of the free and immobilized enzyme in β-mercaptoethanol produced a 20 % of enzyme activity recovery, suggesting that the inactivation due to the immobilization could be a consequence of the modification of the catalytic Cys. To prevent the enzyme inactivation during the immobilization, switching off of ficin via Cys reaction with dipyridyl-disulfide was implemented, giving a reversible disulfide bond that produced a fully inactive enzyme. The switch on of ficin activity was implemented by incubation in 1 M β-mercaptoethanol. Using this strategy to immobilize the enzyme on vinyl sulfone agarose beads, the expressed activity of the immobilized ficin could be boosted up to 80 %. The immobilized enzyme presented a thermal stabilization similar to that obtained using ficin-glyoxyl-agarose beads. This procedure may be extended to many enzymes containing critical Cys, to permit their immobilization or chemical modification.
Collapse
Affiliation(s)
- Roberto Morellon-Sterling
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Student of Departamento de Biología Molecular, Universidad Autónoma de Madrid, Darwin 2, Campus UAM-CSIC, Cantoblanco, 28049 Madrid, Spain
| | - Juan M Bolivar
- FQPIMA Group, Chemical and Materials Engineering Department, Faculty of Chemical Sciences, Complutense University of Madrid, Complutense Ave., Madrid 28040, Spain
| | - Roberto Fernandez-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, Marie Curie 2, Campus UAM-CSIC Cantoblanco, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Academics, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|