1
|
Zhizhong W, Chao H, Huang G, Bin H, Bin H. Cold spray micro-defects and post-treatment technologies: a review. RAPID PROTOTYPING JOURNAL 2022; 28:330-357. [DOI: 10.1108/rpj-12-2020-0302] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Purpose
The deposition of particles onto a substrate during the cold spraying (CS) process relies on severe plastic deformation, so there are various micro-defects induced by insufficient deformation and severe crushing. To solve the problems, many post-treat techniques have been used to improving the quality by eliminating the micro-defects. This paper aims to help scholars and engineers in this field a better and systematic understand of CS technology by summarizing the post-treatment technologies that have been investigated recently years.
Design/methodology/approach
This review summarizes the types of micro-defects and introduces the effect of micro-defects on the properties of CS coating/additive manufactured, illustrates the post-treatment technologies and its effect on the microstructure and performances, and finally outlooks the future development trends of post-treatments for CS.
Findings
There are significant discoveries in post-treatment technology to change the performance of cold spray deposits. There are also many limitations for post-treatment methods, including improved performance and limitations of use. Thus, there is still a strong requirement for further improvement. Hybrid post-treatment may be a more ideal method, as it can eliminate more defects than a single method. The proposed ultrasonic impact treatment could be an alternative method, as it can densify and flatten the CS deposits.
Originality/value
It is the first time to reveal the influence factors on the performances of CS deposits from the perspective of microdefects, and proposed corresponding well targeted post-treatment methods, which is more instructive for improving the performances of CS deposits.
Collapse
|
2
|
Gangolu J, Balaiah S, Nandi S, Roy H. Optimization and Quest of HPMC loaded Stavudine Controlled Release Dosage Development by Central Composite Design utilizing Reduced Factorial Screening Technique. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e201144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
|