1
|
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023; 127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fragmentation and embedding schemes are of great importance when applying quantum-chemical calculations to more complex and attractive targets. The divide-and-conquer (DC)-based quantum-chemical model is a fragmentation scheme that can be connected to embedding schemes. This feature article explains several DC-based schemes developed by the authors over the last two decades, which was inspired by the pioneering study of DC self-consistent field (SCF) method by Yang and Lee (J. Chem. Phys. 1995, 103, 5674-5678). First, the theoretical aspects of the DC-based SCF, electron correlation, excited-state, and nuclear orbital methods are described, followed by the two-component relativistic theory, quantum-mechanical molecular dynamics simulation, and the introduction of three programs, including DC-based schemes. Illustrative applications confirmed the accuracy and feasibility of the DC-based schemes.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - Junji Seino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
2
|
Sakti AW, Wahyudi ST, Ahmad F, Darmawan N, Hardhienata H, Alatas H. Effects of Salt Concentration on the Water and Ion Self-Diffusion Coefficients of a Model Aqueous Sodium-Ion Battery Electrolyte. J Phys Chem B 2022; 126:2256-2264. [PMID: 35271293 DOI: 10.1021/acs.jpcb.1c09619] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aqueous sodium-ion battery is a promising alternative to the well-known lithium-ion battery owing to the large abundance of sodium ion resources. Although it is safer than the lithium-ion battery, the voltage window of the sodium-ion battery is narrower than that of the lithium-ion battery, thus limiting its practical implementation. Therefore, a highly concentrated electrolyte is required to address this issue. In the present work, the effect of the salt concentration on the transport properties of water molecules is investigated via theoretical analyses at the quantum mechanical level. A molecular dynamics simulation at the quantum mechanical level revealed that as the salt concentration increases, the ion-water interactions became stronger, leading to a lower diffusivity and a lower electronic band gap. These imply that the superconcentrated aqueous-based electrolytes have high potentials for the sodium-ion battery applications.
Collapse
Affiliation(s)
- Aditya Wibawa Sakti
- Department of Chemistry, Faculty of Science and Computer, Universitas Pertamina, Jakarta 12220, Indonesia.,Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Waseda Research Institute for Science and Engineering (WISE), Waseda University, Tokyo 169-8555, Japan.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Setyanto Tri Wahyudi
- Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia.,Biophysics Division, Department of Physics, IPB University, Bogor 16680, Indonesia
| | - Faozan Ahmad
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Noviyan Darmawan
- Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia.,Inorganic Chemistry Division, Department of Chemistry, IPB University, Bogor 16680, Indonesia
| | - Hendradi Hardhienata
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| | - Husin Alatas
- Theoretical Physics Division, Department of Physics, IPB University, Bogor 16680, Indonesia.,Indonesia Computational-Research Consortium on Renewable Energy (ICRC-RE), IPB University, Bogor 16680, Indonesia
| |
Collapse
|
3
|
Nishimura Y, Nakai H. Parallel implementation of efficient charge-charge interaction evaluation scheme in periodic divide-and-conquer density-functional tight-binding calculations. J Comput Chem 2017; 39:105-116. [DOI: 10.1002/jcc.25086] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 10/01/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yoshifumi Nishimura
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
| | - Hiromi Nakai
- Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering; Waseda University, 3-4-1 Okubo, Shinjuku-ku; Tokyo 169-8555 Japan
- CREST, Japan Science and Technology Agency, 4-1-8 Honcho; Kawaguchi 332-0012 Japan
- ESICB, Kyoto University, Kyotodaigaku-Katsura; Kyoto 615-8520 Japan
| |
Collapse
|
4
|
Kobayashi M, Nakai H. How does it become possible to treat delocalized and/or open-shell systems in fragmentation-based linear-scaling electronic structure calculations? The case of the divide-and-conquer method. Phys Chem Chem Phys 2012; 14:7629-39. [DOI: 10.1039/c2cp40153c] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|