1
|
Guinart A, Korpidou M, Doellerer D, Pacella G, Stuart MCA, Dinu IA, Portale G, Palivan C, Feringa BL. Synthetic molecular motor activates drug delivery from polymersomes. Proc Natl Acad Sci U S A 2023; 120:e2301279120. [PMID: 37364098 PMCID: PMC10319042 DOI: 10.1073/pnas.2301279120] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
The design of stimuli-responsive systems in nanomedicine arises from the challenges associated with the unsolved needs of current molecular drug delivery. Here, we present a delivery system with high spatiotemporal control and tunable release profiles. The design is based on the combination of an hydrophobic synthetic molecular rotary motor and a PDMS-b-PMOXA diblock copolymer to create a responsive self-assembled system. The successful incorporation and selective activation by low-power visible light (λ = 430 nm, 6.9 mW) allowed to trigger the delivery of a fluorescent dye with high efficiencies (up to 75%). Moreover, we proved the ability to turn on and off the responsive behavior on demand over sequential cycles. Low concentrations of photoresponsive units (down to 1 mol% of molecular motor) are shown to effectively promote release. Our system was also tested under relevant physiological conditions using a lung cancer cell line and the encapsulation of an Food and Drug Administration (FDA)-approved drug. Similar levels of cell viability are observed compared to the free given drug showing the potential of our platform to deliver functional drugs on request with high efficiency. This work provides an important step for the application of synthetic molecular machines in the next generation of smart delivery systems.
Collapse
Affiliation(s)
- Ainoa Guinart
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Maria Korpidou
- Department of Chemistry, University of Basel, BPR 1096, 4058Basel, Switzerland
| | - Daniel Doellerer
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Gianni Pacella
- Faculty of Science and Engineering, Zernike Institute for Advanced Materials, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Marc C. A. Stuart
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, BPR 1096, 4058Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, BioPark Rosental 1095Basel, Switzerland
| | - Giuseppe Portale
- Faculty of Science and Engineering, Zernike Institute for Advanced Materials, University of Groningen, 9747 AGGroningen, The Netherlands
| | - Cornelia Palivan
- Department of Chemistry, University of Basel, BPR 1096, 4058Basel, Switzerland
- National Centre of Competence in Research-Molecular Systems Engineering, BioPark Rosental 1095Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, 4056Basel, Switzerland
| | - Ben L. Feringa
- Faculty of Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, 9747 AGGroningen, The Netherlands
- Faculty of Science and Engineering, Zernike Institute for Advanced Materials, University of Groningen, 9747 AGGroningen, The Netherlands
| |
Collapse
|
2
|
Zhong S, Yao S, Zhao Q, Wang Z, Liu Z, Li L, Wang ZL. Electricity‐Assisted Cancer Therapy: From Traditional Clinic Applications to Emerging Methods Integrated with Nanotechnologies. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Songjing Zhong
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Shuncheng Yao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Qinyu Zhao
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhuo Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Zhirong Liu
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- School of Nanoscience and Technology University of Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P.R. China
- Center on Nanoenergy Research Guangxi University Nanning 530004 P.R. China
| |
Collapse
|
3
|
Lee S, M Silva S, Caballero Aguilar LM, Eom T, Moulton SE, Shim BS. Biodegradable bioelectronics for biomedical applications. J Mater Chem B 2022; 10:8575-8595. [PMID: 36214325 DOI: 10.1039/d2tb01475k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Biodegradable polymers have been widely used in tissue engineering with the potential to be replaced by regenerative tissue. While conventional bionic interfaces are designed to be implanted in living tissue and organs permanently, biocompatible and biodegradable electronic materials are now progressing a paradigm shift towards transient and regenerative bionic engineering. For example, biodegradable bioelectronics can monitor physiologies in a body, transiently rehabilitate disease symptoms, and seamlessly form regenerative interfaces from synthetic electronic devices to tissues by reducing inflammatory foreign-body responses. Conventional electronic materials have not readily been considered biodegradable. However, several strategies have been adopted for designing electroactive and biodegradable materials systems: (1) conductive materials blended with biodegradable components, (2) molecularly engineered conjugated polymers with biodegradable moieties, (3) naturally derived conjugated biopolymers, and (4) aqueously dissolvable metals with encapsulating layers. In this review, we endeavor to present the technical bridges from electrically active and biodegradable material systems to edible and biodegradable electronics as well as transient bioelectronics with pre-clinical bio-instrumental applications, including biodegradable sensors, neural and tissue engineering, and intelligent drug delivery systems.
Collapse
Affiliation(s)
- Seunghyeon Lee
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Saimon M Silva
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Lilith M Caballero Aguilar
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Taesik Eom
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| | - Simon E Moulton
- ARC Centre of Excellence for Electromaterials Science, School of Science, Computing and Engineering Technologies, Swinburne University of Technology, Melbourne, Victoria 3122, Australia.,Iverson Health Innovation Research Institute, Swinburne University of Technology, Melbourne, Victoria 3122, Australia. .,The Aikenhead Centre for Medical Discovery, St Vincent's Hospital Melbourne, Melbourne, Victoria 3065, Australia
| | - Bong Sup Shim
- Program in Biomedical Science & Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea. .,Department of Chemical Engineering, Inha University, 100, Inha-ro, Michuhol-gu, Incheon, Republic of Korea
| |
Collapse
|
4
|
Wagner J, Song Y, Lee T, Katz HE. The combined influence of polythiophene side chains and electrolyte anions on organic electrochemical transistors. ELECTROCHEMICAL SCIENCE ADVANCES 2021. [DOI: 10.1002/elsa.202100165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Justine Wagner
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Yunjia Song
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Taein Lee
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| | - Howard E. Katz
- Department of Materials Science and Engineering Johns Hopkins University Baltimore Maryland USA
| |
Collapse
|
5
|
Kesharwani P, Bisht A, Alexander A, Dave V, Sharma S. Biomedical applications of hydrogels in drug delivery system: An update. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102914] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
6
|
Gholamali I. Stimuli-Responsive Polysaccharide Hydrogels for Biomedical Applications: a Review. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2019. [DOI: 10.1007/s40883-019-00134-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
7
|
Onaciu A, Munteanu RA, Moldovan AI, Moldovan CS, Berindan-Neagoe I. Hydrogels Based Drug Delivery Synthesis, Characterization and Administration. Pharmaceutics 2019; 11:E432. [PMID: 31450869 PMCID: PMC6781314 DOI: 10.3390/pharmaceutics11090432] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/02/2019] [Accepted: 08/12/2019] [Indexed: 02/06/2023] Open
Abstract
Hydrogels represent 3D polymeric networks specially designed for various medical applications. Due to their porous structure, they are able to swollen and to entrap large amounts of therapeutic agents and other molecules. In addition, their biocompatibility and biodegradability properties, together with a controlled release profile, make hydrogels a potential drug delivery system. In vivo studies have demonstrated their effectiveness as curing platforms for various diseases and affections. In addition, the results of the clinical trials are very encouraging and promising for the use of hydrogels as future target therapy strategies.
Collapse
Affiliation(s)
- Anca Onaciu
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
| | - Raluca Andrada Munteanu
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
| | - Alin Iulian Moldovan
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Pasteur 6 Street, 400349 Cluj-Napoca, Romania
| | - Cristian Silviu Moldovan
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics-Biophysics, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Pasteur 6 Street, 400349 Cluj-Napoca, Romania
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Medfuture-Research Center for Advanced Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23/Pasteur 4-6 Street, 400337 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, Marinescu 23 Street, 400337 Cluj-Napoca, Romania.
- The Oncology Institute "Prof Dr Ion Chiricuța", Republicii 34-36 Street, 400015 Cluj-Napoca, Romania.
| |
Collapse
|
8
|
Gaware SA, Rokade KA, Bala P, Kale SN. Microneedles of chitosan‐porous carbon nanocomposites: Stimuli (pH and electric field)‐initiated drug delivery and toxicological studies. J Biomed Mater Res A 2019; 107:1582-1596. [DOI: 10.1002/jbm.a.36672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/14/2019] [Accepted: 02/21/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Shankar A. Gaware
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| | - Kasturi A. Rokade
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
- Department of Bioscience and TechnologyDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| | - Preetam Bala
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| | - Sangeeta N. Kale
- Department of Applied PhysicsDefence Institute of Advanced Technology Pune Maharashtra, 411025 India
| |
Collapse
|
9
|
Study of ionic charge dependent salt resistant swelling behavior and removal of colloidal particles using reduced gum rosin-poly(acrylamide)-based green flocculant. IRANIAN POLYMER JOURNAL 2016. [DOI: 10.1007/s13726-016-0427-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Lee H, Hong W, Jeon S, Choi Y, Cho Y. Electroactive polypyrrole nanowire arrays: synergistic effect of cancer treatment by on-demand drug release and photothermal therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:4264-4269. [PMID: 25815804 DOI: 10.1021/acs.langmuir.5b00534] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An electroresponsive drug release system based on polypyrrole (Ppy) nanowires was developed to induce the local delivery of anticancer drug, doxorubicin (DOX), according to the applied electric field. DOX-conjugated Ppy nanowire (NW) (DOX/Ppy NW) array was initially prepared by electrochemical deposition of a mixture of pyrrole monomers and biotin as dopants in the anodic alumina oxide membrane as a sacrificial template. Morphological observation by scanning electron microscopy revealed free-standing and 3D nanotopographical features with large surface area and high density. In addition, we investigated the antitumor efficacy of DOX released from DOX/Ppy NW array in response to the external electric field using two kinds of cancer cell lines, human oral squamous carcinoma cells (KB cells) and human breast cancer cells (MCF7 cells). Meanwhile, strong photothermal effect as a result of a near-infrared absorbing ability of Ppy synergistically maximizes the chemotherapeutic efficacy. Our results suggested that the proposed multifunctional Ppy platform possessing several beneficial features is very promising for many therapeutic applications including cancer.
Collapse
Affiliation(s)
- HyungJae Lee
- New Experimental Therapeutic Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsamdong-gu, Goyang, Gyeonggi-do 410-769, South Korea
| | - Wooyoung Hong
- New Experimental Therapeutic Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsamdong-gu, Goyang, Gyeonggi-do 410-769, South Korea
| | - Seunghyun Jeon
- New Experimental Therapeutic Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsamdong-gu, Goyang, Gyeonggi-do 410-769, South Korea
| | - Yongdoo Choi
- New Experimental Therapeutic Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsamdong-gu, Goyang, Gyeonggi-do 410-769, South Korea
| | - Youngnam Cho
- New Experimental Therapeutic Branch, National Cancer Center, 111 Jungbalsan-ro, Ilsamdong-gu, Goyang, Gyeonggi-do 410-769, South Korea
| |
Collapse
|
11
|
Curcio M, Spizzirri UG, Cirillo G, Vittorio O, Picci N, Nicoletta FP, Iemma F, Hampel S. On demand delivery of ionic drugs from electro-responsive CNT hybrid films. RSC Adv 2015. [DOI: 10.1039/c5ra05484b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Electro responsive hybrid hydrogel films able to precisely modulate the release of drugs as a function of their net charge.
Collapse
Affiliation(s)
- M. Curcio
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - U. G. Spizzirri
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - G. Cirillo
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - O. Vittorio
- Children's Cancer Institute Australia
- Lowy Cancer Research Centre
- University of New South Wales
- Sydney
- Australia
| | - N. Picci
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - F. P. Nicoletta
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - F. Iemma
- Department of Pharmacy
- Health and Nutritional Sciences
- University of Calabria
- Rende (CS)
- Italy
| | - S. Hampel
- Leibniz Institute for Solid State and Materials Research
- Dresden
- Germany
| |
Collapse
|
12
|
Indermun S, Choonara YE, Kumar P, Du Toit LC, Modi G, Luttge R, Pillay V. Patient-Controlled Analgesia: Therapeutic Interventions Using Transdermal Electro-Activated and Electro-Modulated Drug Delivery. J Pharm Sci 2014; 103:353-66. [DOI: 10.1002/jps.23829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/28/2013] [Accepted: 12/03/2013] [Indexed: 01/14/2023]
|