1
|
Oroná JD, Zorrilla SE, Peralta JM. Assessment of calcium alginate gels as wall materials for encapsulation systems. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:2458-2466. [PMID: 37975168 DOI: 10.1002/jsfa.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/21/2023] [Accepted: 11/17/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND Calcium alginate gels are widely used to encapsulate active compounds. Some characteristic parameters of these gels are necessary to describe the release of active compounds through mechanistic mathematical models. In this work, transport and kinetics properties of calcium alginate gels were determined through simple experimental techniques. RESULTS The weight-average molecular weight (M ¯ w = 192 × 103 Da) and the fraction of residues of α-l-guluronic acid (F G = 0.356) of sodium alginate were determined by capillary viscometry and 1 H-nuclear magnetic resonance at 25 °C, respectively. Considering the half egg-box model, both values were used to estimate the molecular weight of calcium alginate asM g = 2.02 × 105 Da. An effective diffusion coefficient of water (D eff , w = 2.256 × 10-9 m2 s-1 ) in calcium alginate was determined using a diffusion cell at 37 °C. Finally, a kinetics constant of depolymerization (k m = 9.72 × 10-9 m3 mol-1 s-1 ) of calcium alginate was obtained considering dissolution of calcium to a medium under intestinal conditions. CONCLUSION The experimental techniques used are simple and easily reproducible. The obtained values may be useful in the design, production, and optimization of the alginate-based delivery systems that require specific release kinetics of the encapsulated active compounds. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jesica Daiana Oroná
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Susana Elizabeth Zorrilla
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| | - Juan Manuel Peralta
- Instituto de Desarrollo Tecnológico para la Industria Química (INTEC), Universidad Nacional del Litoral-CONICET, Santa Fe, Argentina
| |
Collapse
|
2
|
Pantakitcharoenkul J, Touma J, Jovanovic G, Coblyn M. Enzyme-functionalized hydrogel film for extracorporeal uric acid reduction. J Biomed Mater Res B Appl Biomater 2024; 112:e35375. [PMID: 38359171 DOI: 10.1002/jbm.b.35375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 11/22/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Enzyme replacement therapy for hyperuricemia treatment has been proven effective for critical state hyperuricemia patients. Still, direct administration of recombinant uricase can induce several fatal side effects. To circumvent this drawback, hydrogel protein carriers can be used in platforms for extracorporeal treatment such as microscale-based devices. In this work, calcium alginate and poly-(vinyl alcohol) hydrogel films were studied for their urate oxidase immobilization and uric acid reduction, which could be implemented in microscale-based extracorporeal devices. A mathematical model was developed in conjunction with uric acid reduction experiments to evaluate the influence of mass transfer and reaction parameters in the Michaelis-Menten kinetic expression. Alginate hydrogels prepared with crosslinker 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide and N-(hydroxysuccinimide) offered superior diffusivity of uric acid in the gel matrix at the maximum value ofD g , UA ≈ $$ {D}_{\mathrm{g},\mathrm{UA}}\approx $$ 1.98 × 10-11 m2 /s compared with alginate prepared solely from ionic crosslinking withD g , UA ≈ $$ {D}_{\mathrm{g},\mathrm{UA}}\approx $$ 5.31 × 10-12 m2 /s at the same alginate concentration. The maximum value of νmax was experimentally determined at 7.78 × 10-5 mol/(m3 s). A 3% sodium alginate hydrogel with crosslinkers yielded the highest reduction of uric acid at 92.70%. The mathematical model demonstrated an excellent prediction of uric acid conversion suggesting potential use of the model for formulation and maximizing the therapeutic performance of functionalized hydrogels.
Collapse
Affiliation(s)
- Jaturavit Pantakitcharoenkul
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
- Center for Research Innovation and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Nakhon Pathom, Thailand
| | - Jad Touma
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| | - Goran Jovanovic
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| | - Matthew Coblyn
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Oregon, USA
| |
Collapse
|
3
|
Liu H, Chiou BS, Ma Y, Corke H, Liu F. Reducing synthetic colorants release from alginate-based liquid-core beads with a zein shell. Food Chem 2022; 384:132493. [PMID: 35247775 DOI: 10.1016/j.foodchem.2022.132493] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/17/2022] [Accepted: 02/14/2022] [Indexed: 01/10/2023]
Abstract
An innovative method to reduce hydrophilic synthetic colorant release at interface was presented in this work, based on the anti-solvent effect at the membrane outside surface of liquid-core beads manufactured by reverse spherification between alginate and calcium ion. Zein, a hydrophobic protein which formed precipitation shell ensured the stability of colorant. Acidification of solvent made zein particles more kinetically stable, allowed zein stretching and collated more orderly secondary structures even in high polarity solvents. Colorants that hydrogen bonded or electrostatically interacted with zein could have optimized release properties. The zein/erythrosine samples had the most orderly secondary structure from circular dichroism and had the highest stability among all zein/colorant systems. The release rate of erythrosine was only 2.76% after 48 h storage after soaking in zein shell solution. This study demonstrated a promising clean and scalable strategy to encapsulate hydrophilic compounds in zein-based shells of liquid-core beads for food, supplement and pharmaceutical applications.
Collapse
Affiliation(s)
- Hongxiang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Bor-Sen Chiou
- Western Regional Research Center, ARS, U.S. Department of Agriculture, Albany, CA 94710, United States
| | - Yun Ma
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China
| | - Harold Corke
- Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China; Faculty of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Fei Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; Biotechnology and Food Engineering Program, Guangdong Technion - Israel Institute of Technology, Shantou, Guangdong 515063, China.
| |
Collapse
|
4
|
Tavafi H, Ali AA, Ghadam P, Gharavi S. Screening, cloning and expression of a novel alginate lyase gene from P. aeruginosa TAG 48 and its antibiofilm effects on P. aeruginosa biofilm. Microb Pathog 2018; 124:356-364. [DOI: 10.1016/j.micpath.2018.08.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Revised: 08/07/2018] [Accepted: 08/13/2018] [Indexed: 12/27/2022]
|
5
|
Kashima K, Imai M. Selective diffusion of glucose, maltose, and raffinose through calcium alginate membranes characterized by a mass fraction of guluronate. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2016.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|