1
|
Holme JA, Vondráček J, Machala M, Lagadic-Gossmann D, Vogel CFA, Le Ferrec E, Sparfel L, Øvrevik J. Lung cancer associated with combustion particles and fine particulate matter (PM 2.5) - The roles of polycyclic aromatic hydrocarbons (PAHs) and the aryl hydrocarbon receptor (AhR). Biochem Pharmacol 2023; 216:115801. [PMID: 37696458 PMCID: PMC10543654 DOI: 10.1016/j.bcp.2023.115801] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Air pollution is the leading cause of lung cancer after tobacco smoking, contributing to 20% of all lung cancer deaths. Increased risk associated with living near trafficked roads, occupational exposure to diesel exhaust, indoor coal combustion and cigarette smoking, suggest that combustion components in ambient fine particulate matter (PM2.5), such as polycyclic aromatic hydrocarbons (PAHs), may be central drivers of lung cancer. Activation of the aryl hydrocarbon receptor (AhR) induces expression of xenobiotic-metabolizing enzymes (XMEs) and increase PAH metabolism, formation of reactive metabolites, oxidative stress, DNA damage and mutagenesis. Lung cancer tissues from smokers and workers exposed to high combustion PM levels contain mutagenic signatures derived from PAHs. However, recent findings suggest that ambient air PM2.5 exposure primarily induces lung cancer development through tumor promotion of cells harboring naturally acquired oncogenic mutations, thus lacking typical PAH-induced mutations. On this background, we discuss the role of AhR and PAHs in lung cancer development caused by air pollution focusing on the tumor promoting properties including metabolism, immune system, cell proliferation and survival, tumor microenvironment, cell-to-cell communication, tumor growth and metastasis. We suggest that the dichotomy in lung cancer patterns observed between smoking and outdoor air PM2.5 represent the two ends of a dose-response continuum of combustion PM exposure, where tumor promotion in the peripheral lung appears to be the driving factor at the relatively low-dose exposures from ambient air PM2.5, whereas genotoxicity in the central airways becomes increasingly more important at the higher combustion PM levels encountered through smoking and occupational exposure.
Collapse
Affiliation(s)
- Jørn A Holme
- Department of Air Quality and Noise, Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box PO Box 222 Skøyen, 0213 Oslo, Norway
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, 61265 Brno, Czech Republic
| | - Miroslav Machala
- Department of Pharmacology and Toxicology, Veterinary Research Institute, 62100 Brno, Czech Republic
| | - Dominique Lagadic-Gossmann
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Christoph F A Vogel
- Department of Environmental Toxicology and Center for Health and the Environment, University of California, Davis, CA 95616, USA
| | - Eric Le Ferrec
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Lydie Sparfel
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, F-35000, Rennes, France
| | - Johan Øvrevik
- Department of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway; Division of Climate and Environmental Health, Norwegian Institute of Public Health, PO Box 222 Skøyen, 0213 Oslo, Norway.
| |
Collapse
|
2
|
Huang TY, Yu JCC. Carbon nanotubes-assisted solid-phase microextraction for the extraction of gasoline in fire debris samples. J Chromatogr A 2023; 1701:464063. [PMID: 37201431 DOI: 10.1016/j.chroma.2023.464063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/20/2023]
Abstract
Gasoline is one of the most encountered ignitable liquids (IL) in fire debris analysis. The extraction of gasoline from fire debris samples presents challenges due to the complicated nature of multicomponent mixtures. This research work proposed a novel carbon nanotube-assisted solid phase microextraction (CNT-SPME) fiber coupled with gas chromatography and mass spectrometry (GC/MS) to determine gasoline residues for fire debris analysis. The CNT-SPME fiber was prepared by a sequential coating of polydopamine, epoxy, and CNTs on a stainless-steel wire. The extraction capabilities of the CNT-SPME fiber for gasoline and its major aromatic groups (xylenes, alkylbenzenes, indanes, and naphthalenes) from neat and spiked samples were promising, with linear dynamic ranges of 0.4-12.5 and 3.1-12.5 µg 20-mL-1 headspace vial, respectively. The average relative standard deviations and accuracies for all concentration ranges in this work were lower than 15%. The relative recovery of the CNT-SPME fiber for all aromatic groups ranged from 28 ± 3% to 59 ± 2%. Additionally, the CNT-SPME fiber showed a higher selectivity for the naphthalenes group in gasoline, as indicated by the experimental outcome using a pulsed thermal desorption process of the extracts. We envision the nanomaterial-based SPME offers promising opportunities for extracting and detecting other ILs to support fire investigation.
Collapse
Affiliation(s)
- Ting-Yu Huang
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Blwers Blvd., Huntsville, TX 77340, United States
| | - Jorn Chi Chung Yu
- Department of Forensic Science, College of Criminal Justice, Sam Houston State University, 1003 Blwers Blvd., Huntsville, TX 77340, United States.
| |
Collapse
|
3
|
Research progress on interference in the identification of accelerants in a fire scene. Se Pu 2022; 40:401-408. [PMID: 35477999 PMCID: PMC9404045 DOI: 10.3724/sp.j.1123.2021.10003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
火灾是影响公共安全最为常见的灾害之一,而放火更是严重威胁人民群众生命财产安全,属于典型的暴力犯罪。犯罪嫌疑人为了达到有效快速放火的目的,往往使用助燃剂实施放火,因而助燃剂的检验鉴定对于认定火灾性质起着至关重要的作用。然而火场情况复杂,容易对助燃剂物证检验鉴定产生较大干扰。在火灾发生发展的过程中,火场高温热环境会作用于已形成的助燃剂燃烧残留物,造成助燃剂的特征组分发生不同程度地挥发、热解等变化,从而影响其检出;同时火灾现场存在的大量石油化工产品,其燃烧/热解产物与常见的助燃剂存在相似甚至相同的特征组分,对判断现场是否存在助燃剂有着很大干扰;而在火灾扑灭之后,助燃剂燃烧残留物在火灾现场还会受到常温环境中光照、压力、通风等因素的共同作用发生物理挥发,其特征组分的质量分数会随之发生下降从而对助燃剂鉴定产生影响;特别地,土壤类物证因土壤中有着不计其数的微生物,它们会使存在于土壤中的助燃剂特征组分发生降解,导致助燃剂组分的减少或缺失,严重影响助燃剂鉴定的准确性。该文从火场热环境、基质干扰、风化效应以及微生物效应4个方面梳理了火场条件对助燃剂检验鉴定干扰的研究现状,重点介绍了火场热环境、橡胶及其制品作为典型基质对汽油检验鉴定影响的新成果,同时指出现阶段此领域研究的不足,并对研究方向进行了展望,旨在为火场助燃剂物证检验鉴定提供参考。
Collapse
|
4
|
Screening Carpet Substrate Interferences in Arson Identification by Solid Phase Microextraction and Gas Chromatography-Mass Spectrometry. SEPARATIONS 2020. [DOI: 10.3390/separations7040063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The sample analysis and data interpretation is the most challenging step of fire debris analysis, due to the presence of combustion and pyrolysis products in the substrate material. In this study, a headspace solid phase microextraction (HS-SPME) procedure was applied to the extraction of combustion and pyrolysis products from three commonly used carpet substrate materials, made of nylon 6,6 and polyesters. Each carpet sample was burned with and without two different ignitable liquids (ILs), i.e., gasoline and kerosene, and the Total Ion Chromatograms (TICs) and Extracted Ion Profiles of characteristic class compounds of ILs were obtained and compared to those of unburned neat ILs, using gas-chromatography mass spectrometry (GC-MS), to study the possible interferences of these substrate materials in fire debris analysis.
Collapse
|
5
|
Kates LN, Richards PI, Sandau CD. The application of comprehensive two-dimensional gas chromatography to the analysis of wildfire debris for ignitable liquid residue. Forensic Sci Int 2020; 310:110256. [DOI: 10.1016/j.forsciint.2020.110256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 02/28/2020] [Accepted: 03/11/2020] [Indexed: 11/29/2022]
|
6
|
Leung D, Forbes S, Maynard P. Volatile organic compound analysis of accelerant detection canine distractor odours. Forensic Sci Int 2019; 303:109953. [DOI: 10.1016/j.forsciint.2019.109953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/21/2019] [Accepted: 09/02/2019] [Indexed: 10/26/2022]
|
7
|
Hondrogiannis EM, Newton C, Alibozek R. Determining the Method Threshold of Identification via Gas Chromatography-Mass Spectrometry of Weathered Gasoline Extracted from Burnt Nylon Carpet. J Forensic Sci 2019; 64:1160-1168. [PMID: 30681140 DOI: 10.1111/1556-4029.13983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 11/10/2018] [Accepted: 11/27/2018] [Indexed: 11/29/2022]
Abstract
The Organization of Scientific Area Committees defines threshold of identification as the minimum concentration of ignitable liquid identifiable from gas chromatographic-mass spectrometry data using accepted pattern identification criteria. We propose a method for determining this threshold for gasoline based on base peak to qualifier ratios of six compounds. The ion ratios were established for each compound in the neat gasoline. These ratios were then compared to those obtained for gasoline and 98% weathered gasoline both spiked onto burnt nylon carpet at 20 ppt down 0.50 ppt, and recovered from the carpet using headspace extraction (ASTM 1412). Identification was confirmed if the compounds' ion ratios fell within ±25% of that in the neat sample. We found that ion ratios for all samples were acceptable for six compounds at 1.60 and 0.80 ppt for extracted neat and extracted 98% weathered gasoline, respectively, illustrating potential for incorporating into Quality Assurance Programs.
Collapse
Affiliation(s)
- Ellen M Hondrogiannis
- Department of Chemistry, Master of Science, Forensic Science Program, Towson University, Towson, MD, 21252-0001
| | - Charlotte Newton
- Department of Chemistry, Master of Science, Forensic Science Program, Towson University, Towson, MD, 21252-0001
| | - Rachel Alibozek
- Department of Chemistry, Master of Science, Forensic Science Program, Towson University, Towson, MD, 21252-0001
| |
Collapse
|
8
|
Detection and Characterization of Ignitable Liquid Residues in Forensic Fire Debris Samples by Comprehensive Two-Dimensional Gas Chromatography. SEPARATIONS 2018. [DOI: 10.3390/separations5030043] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This study covers an extensive experimental design that was developed for creating simulated fire debris samples under controlled conditions for the detection and identification of ignitable liquids (IL) residues. This design included 19 different substrates, 45 substrate combinations with and without ignitable liquids, and 45 different ILs from three classes (i.e., white spirit, gasoline, and lamp oil). Chemical analysis was performed with comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) for improved separation and compound identification. The enhanced peak capacity offered by GC×GC-TOFMS allowed the use of a target compound list in combination with a simple binary decision model to arrive at quite acceptable results with respect to IL detection (89% true positive and 7% false positive rate) and classification (100% correct white spirit, 79% correct gasoline, and 77% correct lamp oil assignment). Although these results were obtained in a limited set of laboratory controlled fire experiments including only three IL classes, this study confirms the conclusions of other studies that GC×GC-TOFMS can be a powerful tool in the challenging task of forensic fire debris analysis.
Collapse
|
9
|
Martín-Alberca C, Ortega-Ojeda FE, García-Ruiz C. Analytical tools for the analysis of fire debris. A review: 2008–2015. Anal Chim Acta 2016; 928:1-19. [DOI: 10.1016/j.aca.2016.04.056] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 04/27/2016] [Accepted: 04/30/2016] [Indexed: 11/16/2022]
|
10
|
Lopatka M, Sigman ME, Sjerps MJ, Williams MR, Vivó-Truyols G. Class-conditional feature modeling for ignitable liquid classification with substantial substrate contribution in fire debris analysis. Forensic Sci Int 2015; 252:177-86. [DOI: 10.1016/j.forsciint.2015.04.035] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 11/24/2022]
|
11
|
Cheenmatchaya A, Kungwankunakorn S. Preparation of Activated Carbon Derived from Rice Husk by Simple Carbonization and Chemical Activation for Using as Gasoline Adsorbent. ACTA ACUST UNITED AC 2014. [DOI: 10.7763/ijesd.2014.v5.472] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|