1
|
Suresh N, Joseph B, Sathyan P, Sweety VK, Waltimo T, Anil S. Photodynamic therapy: An emerging therapeutic modality in dentistry. Bioorg Med Chem 2024; 114:117962. [PMID: 39442490 DOI: 10.1016/j.bmc.2024.117962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/25/2024]
Abstract
Photodynamic Therapy (PDT) is a rapidly evolving, non-invasive treatment modality with considerable promise in dental pharmacotherapeutics. This review article comprehensively examines PDT, beginning with its principles and then delving into its diverse applications in dentistry, including periodontal disease, endodontics, oral cancer, dental implants, and dental caries. Each area presents the latest research and discusses the potential benefits and challenges. The unique advantages of PDT are highlighted, such as selective targeting, broad-spectrum antimicrobial effect, lack of resistance development, and its synergistic effect with other treatments. However, challenges such as photosensitizer delivery, light penetration, oxygen availability, and the need to standardize protocols are also acknowledged. The review further explores future perspectives of PDT in dentistry, including advancements in photosensitizer design, overcoming hypoxic limitations, personalized protocols, integration with other therapies, and standardization and regulation. The potential of advanced technologies, such as nanotechnology and synthetic biology, to improve PDT outcomes is also discussed. The review concludes that while PDT has shown immense potential to revolutionize dental pharmacotherapeutics, further high-quality research is needed to translate this potential into everyday dental practice. The promising future of PDT in dentistry suggests a more effective and less invasive treatment option for a range of dental conditions.
Collapse
Affiliation(s)
- Nandita Suresh
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland; Pushpagiri Institute of Medical Sciences and Research Centre, Mendicity, Perumthuruthy, Tiruvalla, Kerala, India.
| | - Betsy Joseph
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland; Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, India
| | - Pradeesh Sathyan
- Department of Oral Pathology, Government Dental College, Kottayam, Kerala, India
| | - Vishnupriya K Sweety
- Pushpagiri Institute of Medical Sciences and Research Centre, Mendicity, Perumthuruthy, Tiruvalla, Kerala, India
| | - Tuomas Waltimo
- Department of Oral and Maxillofacial Diseases, Helsinki University and University Hospital, Helsinki, Finland; Faculty of Medicine, University of Basel, Basel, Switzerland
| | - Sukumaran Anil
- Oral Health Institute, Hamad Medical Corporation, Doha, Qatar; College of Dental Medicine, Qatar University, Doha, Qatar
| |
Collapse
|
2
|
Adnane F, Soliman SMA, ElZayat E, Abdelsalam EM, Fahmy HM. Evaluation of chlorophyll-loaded mesoporous silica nanoparticles for photodynamic therapy on cancer cell lines. Lasers Med Sci 2024; 39:45. [PMID: 38253944 PMCID: PMC10803611 DOI: 10.1007/s10103-024-03988-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Chlorophyll (Chl) is a promising natural photosensitizer (PS) in photodynamic treatment (PDT). Mesoporous silica nanoparticles (MSNs) were chosen to increase the effectiveness of PDT. This study aimed to evaluate the synergistic efficacy of chlorophyll-loaded mesoporous silica nanoparticles (Chl-MSNs) with photodynamic therapy (PDT) and to investigate their potential toxicity in HepG2, MDA-MB-231, and HSF cell lines. Chl-MSNs were prepared via the physical adsorption method. TEM, DLS, and zeta potential examined morphology, size, and surface characteristics. MSNs and Chl-MSNs were characterized using the same techniques. HPLC was used to assess the encapsulation efficiency. At pH 7.4, an in vitro release experiment of Chl-MSNs was performed. Chl, MSNs, and Chl-MSNs were applied to the three cell lines at different concentrations and subjected to red (650 nm) and blue (450-500 nm) lasers. MSNs and Chl-MSNs' sizes were 90.338 ± 38.49 nm and 123.84 ± 15.67 nm, respectively, as obtained by TEM; the hydrodynamic diameter for MSNs (93.69 ± 20.53 nm) and Chl-MSNs (212.95 ± 19.76 nm); and their zeta potential values are - 16.7 ± 2.19 mV and - 18.84 ± 1.40 mV. The encapsulation efficiency of Chl-MSNs was 70%. Chl-MSNs displayed no toxicity in dark conditions but showed excellent photostability under blue and red light exposure. Furthermore, using Chl over Chl-MSNs has a higher PDT efficiency than the tested cell lines. Chl-MSNs have the potential to be an effective delivery system. PDT proved to be an essential technique for cancer treatment. Blue laser is recommended over red laser with Chl and MSNs for destroying cancer cells.
Collapse
Affiliation(s)
- Fadya Adnane
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt.
| | | | - Emad ElZayat
- Biotechnology Department, Faculty of Science, Cairo University, Cairo, Egypt
| | - Essam M Abdelsalam
- Laser Applications in Metrology, Photochemistry, and Agriculture (LAMPA) Department, National Institute of Laser Enhanced Sciences (NILES), Cairo University, Cairo, Egypt
| | - Heba Mohamed Fahmy
- Biophysics Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
3
|
Mori N, Kawasaki H, Nishida E, Kanemoto Y, Miyaji H, Umeda J, Kondoh K. Rose bengal-decorated rice husk-derived silica nanoparticles enhanced singlet oxygen generation for antimicrobial photodynamic inactivation. JOURNAL OF MATERIALS SCIENCE 2023; 58:2801-2813. [PMID: 36713647 PMCID: PMC9875779 DOI: 10.1007/s10853-023-08194-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
UNLABELLED Rice husks are well known for their high silica content, and the RH-derived silica nanoparticles (RH NPs) are amorphous and biocompatible; therefore, they are suitable raw materials for biomedical applications. In this study, rose bengal-impregnated rice husk nanoparticles (RB-RH NPs) were prepared for their potential photosensitization and 1O2 generation as antimicrobial photodynamic inactivation. RB is a halogen-xanthene type's photosensitizer showing high singlet oxygen efficiency, and the superior photophysical properties are desirable for RB in the antimicrobial photodynamic inactivation of bacteria. To enhance the binding of anionic RB to RH NPs, we conducted cationization for the RH NPs using polyethyleneimine (PEI). The control of the RB adsorption state on cationic PEI-modified RH NPs was essential for RB RH-NP photosensitizers to obtain efficient 1O2 generation. Minimizing RB aggregation allowed highly efficient 1O2 production from RB-RH NPs at the molar ratio of RB with the PEI, XRB/PEI. = 0.1. The RB-RH NPs have significant antimicrobial activity against Streptococcus mutans compared to free RB after white light irradiation. The RB-RH NP-based antimicrobial photodynamic inactivation can be employed effectively in treating Streptococcus mutans for dental applications. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10853-023-08194-z.
Collapse
Affiliation(s)
- Nanase Mori
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8689 Japan
| | - Hideya Kawasaki
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials and Bioengineering, Kansai University, Suita-shi, Osaka 564-8689 Japan
| | - Erika Nishida
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Yukimi Kanemoto
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Hirofumi Miyaji
- Department of Periodontology and Endodontology, Faculty of Dental Medicine, Hokkaido University, Sapporo, Hokkaido 060-8586 Japan
| | - Junko Umeda
- Joining and Welding Research Institute, Osaka University, Ibaraki, 567-0047 Japan
| | - Katsuyoshi Kondoh
- Joining and Welding Research Institute, Osaka University, Ibaraki, 567-0047 Japan
| |
Collapse
|
4
|
Effect of curcumin sorbed selenite substituted hydroxyapatite on osteosarcoma cells: An in vitro study. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101963] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Seidi Damyeh M, Mereddy R, Netzel ME, Sultanbawa Y. An insight into curcumin-based photosensitization as a promising and green food preservation technology. Compr Rev Food Sci Food Saf 2020; 19:1727-1759. [PMID: 33337095 DOI: 10.1111/1541-4337.12583] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 05/08/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022]
Abstract
Consumer awareness on the side effects of chemical preservatives has increased the demand for natural preservation technologies. An efficient and sustainable alternative to current conventional preservation techniques should guarantee food safety and retain its quality with minimal side effects. Photosensitization, utilizing light and a natural photosensitizer, has been postulated as a viable and green alternative to the current conventional preservation techniques. The potential of curcumin as a natural photosensitizer is reviewed in this paper as a practical guide to develop a safe and effective decontamination tool for industrial use. The fundamentals of the photosensitization mechanism are discussed, with the main emphasis on the natural photosensitizer, curcumin, and its application to inactivate microorganisms as well as to enhance the shelf life of foods. Photosensitization has shown promising results in inactivating a wide spectrum of microorganisms with no reported microbial resistance due to its particular lethal mode of targeting nucleic acids. Curcumin as a natural photosensitizer has recently been investigated and demonstrated efficacy in decontamination and delaying spoilage. Moreover, studies have shown the beneficial impact of an appropriate encapsulation technique to enhance the cellular uptake of photosensitizers, and therefore, the phototoxicity. Further studies relating to improved delivery of natural photosensitizers with inherent poor solubility should be conducted. Also, detailed studies on various food products are warranted to better understand the impact of encapsulation on curcumin photophysical properties, photo-driven release mechanism, and nutritional and organoleptic properties of treated foods.
Collapse
Affiliation(s)
- Maral Seidi Damyeh
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Ram Mereddy
- Department of Agriculture and Fisheries, Queensland Government, Coopers Plains, QLD, Australia
| | - Michael E Netzel
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| | - Yasmina Sultanbawa
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Coopers Plains, QLD, Australia
| |
Collapse
|
6
|
Chaudhuri S, Sardar S, Bagchi D, Dutta S, Debnath S, Saha P, Lemmens P, Pal SK. Photoinduced Dynamics and Toxicity of a Cancer Drug in Proximity of Inorganic Nanoparticles under Visible Light. Chemphyschem 2015; 17:270-7. [PMID: 26563628 DOI: 10.1002/cphc.201500905] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 11/06/2015] [Indexed: 12/22/2022]
Abstract
Drug sensitization with various inorganic nanoparticles (NPs) has proved to be a promising and an emergent concept in the field of nanomedicine. Rose bengal (RB), a notable photosensitizer, triggers the formation of reactive oxygen species under green-light irradiation, and consequently, it induces cytotoxicity and cell death. In the present study, the effect of photoinduced dynamics of RB upon complexation with semiconductor zinc oxide NPs is explored. To accomplish this, we successfully synthesized nanohybrids of RB with ZnO NPs with a particle size of 24 nm and optically characterized them. The uniform size and integrity of the particles were confirmed by high-resolution transmission electron microscopy. UV/Vis absorption and steady-state fluorescence studies reveal the formation of the nanohybrids. ultrafast picosecond-resolved fluorescence studies of RB-ZnO nanohybrids demonstrate an efficient electron transfer from the photoexcited drug to the semiconductor NPs. Picosecond-resolved Förster resonance energy transfer from ZnO NPs to RB unravel the proximity of the drug to the semiconductor at the molecular level. The photoinduced ROS formation was monitored using a dichlorofluorescin oxidation assay, which is a conventional oxidative stress indicator. It is observed that the ROS generation under green light illumination is greater at low concentrations of RB-ZnO nanohybrids compared with free RB. Substantial photodynamic activity of the nanohybrids in bacterial and fungal cell lines validated the in vitro toxicity results. Furthermore, the cytotoxic effect of the nanohybrids in HeLa cells, which was monitored by MTT assay, is also noteworthy.
Collapse
Affiliation(s)
- Siddhi Chaudhuri
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700098, India
| | - Samim Sardar
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700098, India
| | - Damayanti Bagchi
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700098, India
| | - Shreyasi Dutta
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700098, India
| | - Sushanta Debnath
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector I, Block AF, Bidhannagar, Kolkata, 700064, India
| | - Partha Saha
- Crystallography and Molecular Biology Division, Saha Institute of Nuclear Physics, Sector I, Block AF, Bidhannagar, Kolkata, 700064, India
| | - Peter Lemmens
- Institute for Condensed Matter Physics, TU Braunschweig, Mendelssohnstraße 3, 38106, Braunschweig, Germany
| | - Samir Kumar Pal
- Department of Chemical, Biological & Macromolecular Sciences, S. N. Bose National Centre for Basic Sciences, Block JD, Sector III, Salt Lake, Kolkata, 700098, India.
| |
Collapse
|