1
|
Zhu C, Jia Y, Tang Y, Guo C, Xi J, Sun C, Li H, Wang W, Zhai Y, Zhu Y, Liu Y. Functionalized chitosan hydrogel promotes osseointegration at the interface of3D printed titanium alloy scaffolds. Int J Biol Macromol 2024; 266:131169. [PMID: 38554899 DOI: 10.1016/j.ijbiomac.2024.131169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Autogenous bone transplantation is a prevalent clinical method for addressing bone defects. However, the limited availability of donor bone and the morbidity associated with bone harvesting have propelled the search for suitable bone substitutes. Bio-inspired scaffolds, particularly those fabricated using electron beam melting (EBM) deposition technology, have emerged as a significant advancement in this field. These 3D-printed titanium alloy scaffolds are celebrated for their outstanding biocompatibility and favorable elastic modulus. Thermosensitive chitosan hydrogel, which transitions from liquid to solid at body temperature, serves as a popular carrier in bone tissue engineering. Icariin (ICA), known for its efficacy in promoting osteoblast differentiation from bone marrow mesenchymal stem cells (BMSCs), plays a crucial role in this context. We developed a system combining a 3D-printed titanium alloy with a thermosensitive chitosan hydrogel, capable of local bone regeneration and integration through ICA delivery. Our in vitro findings reveal that this system can gradually release ICA, demonstrating excellent biocompatibility while fostering BMSC proliferation and osteogenic differentiation. Immunohistochemistry and Micro-CT analyses further confirm the effectiveness of the system in accelerating in vivo bone regeneration and enhancing osseointegration. This composite system lays a significant theoretical foundation for advancing local bone regeneration and integration.
Collapse
Affiliation(s)
- Chenyi Zhu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yudong Jia
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yanfeng Tang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Chaowei Guo
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Jianing Xi
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Chaojun Sun
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Hongjun Li
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Wenlong Wang
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China
| | - Yuankun Zhai
- School of stomatology HENU, Kaifeng 475000, PR China
| | - Yingjie Zhu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China.
| | - Youwen Liu
- Medical Center of Hip, Luoyang Orthopedic-Traumatological Hospital, Luoyang 471000, PR China.
| |
Collapse
|
2
|
Safavi MS, Walsh FC, Visai L, Khalil-Allafi J. Progress in Niobium Oxide-Containing Coatings for Biomedical Applications: A Critical Review. ACS OMEGA 2022; 7:9088-9107. [PMID: 35356687 PMCID: PMC8944537 DOI: 10.1021/acsomega.2c00440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/01/2022] [Indexed: 05/11/2023]
Abstract
Typically, pure niobium oxide coatings are deposited on metallic substrates, such as commercially pure Ti, Ti6Al4 V alloys, stainless steels, niobium, TiNb alloy, and Mg alloys using techniques such as sputter deposition, sol-gel deposition, anodizing, and wet plasma electrolytic oxidation. The relative advantages and limitations of these coating techniques are considered, with particular emphasis on biomedical applications. The properties of a wide range of pure and modified niobium oxide coatings are illustrated, including their thickness, morphology, microstructure, elemental composition, phase composition, surface roughness and hardness. The corrosion resistance, tribological characteristics and cell viability/proliferation of the coatings are illustrated using data from electrochemical, wear resistance and biological cell culture measurements. Critical R&D needs for the development of improved future niobium oxide coatings, in the laboratory and in practice, are highlighted.
Collapse
Affiliation(s)
- Mir Saman Safavi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
| | - F. C. Walsh
- Electrochemical
Engineering Laboratory & National Centre for Advanced Tribology,
Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Livia Visai
- Molecular
Medicine Department (DMM), Center for Health Technologies (CHT), UdR
INSTM, University of Pavia, Via Taramelli 3/B, 27100 Pavia, Italy
- Medicina
Clinica-Specialistica, UOR5 Laboratorio di Nanotecnologie, ICS Maugeri, IRCCS, 27100 Pavia, Italy
| | - Jafar Khalil-Allafi
- Research
Center for Advanced Materials, Faculty of Materials Engineering, Sahand University of Technology, 513351996 Tabriz, Iran
| |
Collapse
|
3
|
Wang X, Mei L, Jin M, Jiang X, Li X, Li J, Xu Y, Meng Z, Zhu J, Wu F. Composite Coating of Graphene Oxide/TiO2 Nanotubes/HHC-36 Antibacterial Peptide Construction and an Exploration of Its Bacteriostat and Osteogenesis Effects. J Biomed Nanotechnol 2021; 17:662-676. [PMID: 35057892 DOI: 10.1166/jbn.2021.3013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Graphene oxide (GO), a kind of polymer, is often selected as a controlled released agent, whereas titanium dioxide (TiO2) nanotubes are commonly used as a drug-coated carrier. This study was conducted to develop methods for manufacturing the GO/TiO2/HHC-36 composite
coating and exploring its bacteriostat and osteogenesis properties. The GO/TiO2 nanotubes were prepared by electrochemical methods and HHC-36 was then adsorbed to GO/TiO2to obtain GO/TiO2/HHC-36. Sustained release of HHC-36 was analyzed and the antibacterial
effect was examined by the inhibition zone test. The biocompatibility and osteogenesis in vitro of GO/TiO2/HHC-36 were explored. Finally, the osteogenesic property of the composite coating was investigated in a rat femoral defect model in vivo. GO/TiO2/HHC-36
was successfully prepared and had good controlled released performance in vitro. The inhibit zone size of S. aureus was 2.1 mm and that of E. coli was 3.0 mm. GO/TiO2/HHC-36 showed good biocompatibility with mesenchymal stem cells (MSCs) and promoted their adhesion,
migration, and differentiation. In addition, the secretion of alkaline phosphatase, collagen, mineralized matrix and osteoblast-related nutrient factors of MSCs was increased after treatment with GO/TiO2/HHC-36. Furthermore, GO/TiO2/HHC-36 also stimulated endotheliocytes
to secrete VEGF, leading to angiogenesis. Finally, implantation of GO/TiO2/HHC-36 in the rat femur defect model resulted in MSC migration and increased expression of osteoblast related proteins. The composite coating with controlled released of HHC-36 showed distinct antibacterial
properties and promoted osteogenesis in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaojun Wang
- Department of Orthopedics, Huzhou Traditional Chinese Medicine Hospital, Affiliated Hospital to Zhejiang Chinese Medical University, Huzhou 313000, P. R.China
| | - Lina Mei
- Department of Internal Medicine, Huzhou Maternity & Child Health Care Hospital, Huzhou 313000, P. R. China
| | - Mingchao Jin
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, P. R. China
| | - Xuesheng Jiang
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, P. R. China
| | - Xiongfeng Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, P. R. China
| | - Jianyou Li
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, P. R. China
| | - Yan Xu
- Department of Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, P. R. China
| | - Zhipeng Meng
- Department of Anesthesiology, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, P. R. China
| | - Junkun Zhu
- Orthopedics Rehabilitation Department, Lishui Municipal Central Hospital, Lishui 323000, P. R. China
| | - Fengfeng Wu
- Department of Orthopedics, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang University, Huzhou 313000, P. R. China
- Department of Rehabilitation, Huzhou Central Hospital, Affiliated Central Hospital of Huzhou University, Huzhou Hospital of Zhejiang
University, Huzhou 313000, P. R. China
| |
Collapse
|
4
|
Abstract
Titanium dioxide (TiO2) is widely used in various fields both in daily life and industry owing to its excellent photoelectric properties and its induced superwettability. Over the past several decades, various methods have been reported to improve the wettability of TiO2 and plenty of practical applications have been developed. The TiO2-derived materials with different morphologies display a variety of functions including photocatalysis, self-cleaning, oil-water separation, etc. Herein, various functions and applications of TiO2 with superwettability are summarized and described in different sections. First, a brief introduction about the discovery of photoelectrodes made of TiO2 is revealed. The ultra-fast spreading behaviors on TiO2 are shown in the part of ultra-fast spreading with superwettability. The part of controllable wettability introduces the controllable wettability of TiO2-derived materials and their related applications. Recent developments of interfacial photocatalysis and photoelectrochemical reactions with TiO2 are presented in the part of interfacial photocatalysis and photoelectrochemical reactions. The part of nanochannels for ion rectification describes ion transportation in nanochannels based on TiO2-derived materials. In the final section, a brief conclusion and a future outlook based on the superwettability of TiO2 are shown.
Collapse
|
5
|
Sarraf M, Nasiri-Tabrizi B, Yeong CH, Madaah Hosseini HR, Saber-Samandari S, Basirun WJ, Tsuzuki T. Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future? CERAMICS INTERNATIONAL 2021; 47:2917-2948. [PMID: 32994658 PMCID: PMC7513735 DOI: 10.1016/j.ceramint.2020.09.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.
Collapse
Key Words
- ALP, Alkaline Phosphatase
- APH, Anodization-Cyclic Precalcification-Heat Treatment
- Ag2O NPs, Silver Oxide Nanoparticles
- AgNPs, Silver Nanoparticles
- Anodization
- BIC, Bone-Implant Contact
- Bioassays
- CAGR, Compound Annual Growth Rate
- CT, Computed Tomography
- DMF, Dimethylformamide
- DMSO, Dimethyl Sulfoxide
- DRI, Drug-Releasing Implants
- E. Coli, Escherichia Coli
- ECs, Endothelial Cells
- EG, Ethylene Glycol
- Electrochemistry
- FA, Formamide
- Fe2+, Ferrous Ion
- Fe3+, Ferric Ion
- Fe3O4, Magnetite
- GEP, Gene Expression Programming
- GO, Graphene Oxide
- HA, Hydroxyapatite
- HObs, Human Osteoblasts
- HfO2 NTs, Hafnium Oxide Nanotubes
- IMCs, Intermetallic Compounds
- LEDs, Light emitting diodes
- MEMS, Microelectromechanical Systems
- MONs, Mixed Oxide Nanotubes
- MOPSO, Multi-Objective Particle Swarm Optimization
- MSCs, Mesenchymal Stem Cells
- Mixed oxide nanotubes
- NMF, N-methylformamide
- Nanomedicine
- OPC1, Osteo-Precursor Cell Line
- PSIs, Patient-Specific Implants
- PVD, Physical Vapor Deposition
- RF, Radio-Frequency
- ROS, Radical Oxygen Species
- S. aureus, Staphylococcus Aureus
- S. epidermidis, Staphylococcus Epidermidis
- SBF, Simulated Body Fluid
- TiO2 NTs, Titanium Dioxide Nanotubes
- V2O5, Vanadium Pentoxide
- VSMCs, Vascular Smooth Muscle Cells
- XPS, X-ray Photoelectron Spectroscopy
- ZrO2 NTs, Zirconium Dioxide Nanotubes
- hASCs, Human Adipose-Derived Stem Cells
Collapse
Affiliation(s)
- Masoud Sarraf
- Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | - Bahman Nasiri-Tabrizi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hamid Reza Madaah Hosseini
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Takuya Tsuzuki
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
6
|
Wang Q, Zhou P, Liu S, Attarilar S, Ma RLW, Zhong Y, Wang L. Multi-Scale Surface Treatments of Titanium Implants for Rapid Osseointegration: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1244. [PMID: 32604854 PMCID: PMC7353126 DOI: 10.3390/nano10061244] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/30/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
The propose of this review was to summarize the advances in multi-scale surface technology of titanium implants to accelerate the osseointegration process. The several multi-scaled methods used for improving wettability, roughness, and bioactivity of implant surfaces are reviewed. In addition, macro-scale methods (e.g., 3D printing (3DP) and laser surface texturing (LST)), micro-scale (e.g., grit-blasting, acid-etching, and Sand-blasted, Large-grit, and Acid-etching (SLA)) and nano-scale methods (e.g., plasma-spraying and anodization) are also discussed, and these surfaces are known to have favorable properties in clinical applications. Functionalized coatings with organic and non-organic loadings suggest good prospects for the future of modern biotechnology. Nevertheless, because of high cost and low clinical validation, these partial coatings have not been commercially available so far. A large number of in vitro and in vivo investigations are necessary in order to obtain in-depth exploration about the efficiency of functional implant surfaces. The prospective titanium implants should possess the optimum chemistry, bionic characteristics, and standardized modern topographies to achieve rapid osseointegration.
Collapse
Affiliation(s)
- Qingge Wang
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Peng Zhou
- School of Aeronautical Materials Engineering, Xi’an Aeronautical Polytechnic Institute, Xi’an 710089, China;
| | - Shifeng Liu
- School of Metallurgical Engineering, Xi’an University of Architecture and Technology, No.13 Yanta Road, Xi’an 710055, China;
| | - Shokouh Attarilar
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
| | - Robin Lok-Wang Ma
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Yinsheng Zhong
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong 999077, China; (R.L.-W.M.); (Y.Z.)
| | - Liqiang Wang
- State Key Laboratory of Metal Matrix Composites, School of Material Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China;
- National Engineering Research Center for Nanotechnology (NERCN), 28 East JiangChuan Road, Shanghai 200241, China
| |
Collapse
|