1
|
Yan B, Chen T, Tao Y, Zhang N, Zhao J, Zhang H, Chen W, Fan D. Fabrication, Functional Properties, and Potential Applications of Mixed Gellan-Polysaccharide Systems: A Review. Annu Rev Food Sci Technol 2024; 15:151-172. [PMID: 37906941 DOI: 10.1146/annurev-food-072023-034318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Gellan, an anionic heteropolysaccharide synthesized by Sphingomonas elodea, is an excellent gelling agent. However, its poor mechanical strength and high gelling temperature limit its application. Recent studies have reported that combining gellan with other polysaccharides achieves desirable properties for food- and biomaterial-related applications. This review summarizes the fabrication methods, functional properties, and potential applications of gellan-polysaccharide systems. Starch, pectin, xanthan gum, and konjac glucomannan are the most widely used polysaccharides in these composite systems. Heating-cooling and ionic-induced cross-linking approaches have been used in the fabrication of these systems. Composite gels fabricated using gellan and various polysaccharides exhibit different functional properties, possibly because of their distinct molecular interactions. In terms of applications, mixed gellan-polysaccharide systems have been extensively used in texture modification, edible coatings and films, bioactive component delivery, and tissue-engineering applications. Further scientific studies, including structural determinations of mixed systems, optimization of processing methods, and expansion of applications in food-related fields, are needed.
Collapse
Affiliation(s)
- Bowen Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Tiantian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuan Tao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Nana Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Daming Fan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China;
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Abdl Aali RAK, Al-Sahlany STG. Gellan Gum as a Unique Microbial Polysaccharide: Its Characteristics, Synthesis, and Current Application Trends. Gels 2024; 10:183. [PMID: 38534601 DOI: 10.3390/gels10030183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/26/2024] [Accepted: 03/02/2024] [Indexed: 03/28/2024] Open
Abstract
Gellan gum (GG) is a linear, negatively charged exopolysaccharide that is biodegradable and non-toxic. When metallic ions are present, a hard and transparent gel is produced, which remains stable at a low pH. It exhibits high water solubility, can be easily bio-fabricated, demonstrates excellent film/hydrogel formation, is biodegradable, and shows biocompatibility. These characteristics render GG a suitable option for use in food, biomedical, and cosmetic fields. Thus, this review paper offers a concise summary of microbial polysaccharides. Moreover, an in-depth investigation of trends in different facets of GG, such as biosynthesis, chemical composition, and physical and chemical properties, is emphasized. In addition, this paper highlights the process of extracting and purifying GG. Furthermore, an in-depth discussion of the advantages and disadvantages of GG concerning other polysaccharides is presented. Moreover, the utilization of GG across different industries, such as food, medicine, pharmaceuticals, cosmetics, etc., is thoroughly examined and will greatly benefit individuals involved in this field who are seeking fresh opportunities for innovative projects in the future.
Collapse
|
3
|
Mahdi AA, Al-Maqtari QA, Al-Ansi W, Hu W, Hashim SBH, Cui H, Lin L. Replacement of polyethylene oxide by peach gum to produce an active film using Litsea cubeba essential oil and its application in beef. Int J Biol Macromol 2023; 241:124592. [PMID: 37116846 DOI: 10.1016/j.ijbiomac.2023.124592] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/11/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023]
Abstract
This study evaluated the effects of adding various concentrations (0 %, 1 %, 2 %, and 3 %) of peach gum (PG) to films made from polyethylene oxide (PEO) combined with Litsea cubeba essential oil (LCEO) to be utilized as active packaging for food in the future. The findings showed that the film containing PG 2 % concentration had the best physic-mechanical properties. In films made with PG, the glass transition temperature was significantly improved. Combining PG and PEO resulted in films that were brighter in color, had lower WVP values, and had the lowest water activity. Furthermore, XRD demonstrated that PG additions were compatible with the film of PEO blended with LCEO. The PG films formulated with PG presented high antioxidant and antibacterial activity against Staphylococcus aureus and E. coli. Wrapping beef with P2G2 film led to maintaining its quality with suitable levels of pH, TBARS, and TVB-N. This also decreased the number of E. coli and S. aureus in beef throughout the storage period. The results indicate that adding PG to PEO films enhances their suitability for food preservation.
Collapse
Affiliation(s)
- Amer Ali Mahdi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen
| | - Qais Ali Al-Maqtari
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen; School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Waleed Al-Ansi
- Department of Food Science and Nutrition, Faculty of Agriculture, Food, and Environment, Sana'a University, Sana'a, Yemen; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Wei Hu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China
| | - Sulafa B H Hashim
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Haiying Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Lin Lin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410007, China.
| |
Collapse
|
4
|
Kweon DK, Han JA. Development of hyaluronic acid-based edible film for alleviating dry mouth. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
5
|
Methods of Analyses for Biodegradable Polymers: A Review. Polymers (Basel) 2022; 14:polym14224928. [PMID: 36433054 PMCID: PMC9694517 DOI: 10.3390/polym14224928] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022] Open
Abstract
Biodegradable polymers are materials that can decompose through the action of various environmental microorganisms, such as bacteria and fungi, to form water and carbon dioxide. The biodegradability characteristics have led to a growing demand for the accurate and precise determination of the degraded polymer composition. With the advancements in analytical product development, various analytical methods are available and touted as practical and preferable methods of bioanalytical techniques, which enable the understanding of the complex composition of biopolymers such as polyhydroxyalkanoates and poly(lactic acid). The former part of this review discusses the definition and examples of biopolymers, followed by the theory and instrumentation of analytical methods applicable to the analysis of biopolymers, such as physical methods (SEM, TEM, weighing analytical balance, etc.), chromatographic methods (GC, THM-GC, SEC/GPC), spectroscopic methods (NMR, FTIR, XRD, XRF), respirometric methods, thermal methods (DSC, DTA, TGA), and meta-analysis. Special focus is given to the chromatographic methods, because this is the routine method of polymer analysis. The aim of this review is to focus on the recent developments in the field of biopolymer analysis and instrument application to analyse the various types of biopolymers.
Collapse
|
6
|
Fabrication and characterization of chitosan/gelatin films loaded with microcapsules of Pulicaria jaubertii extract. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107624] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
7
|
Basiri S. Applications of Microbial Exopolysaccharides in the Food Industry. AVICENNA JOURNAL OF MEDICAL BIOCHEMISTRY 2021. [DOI: 10.34172/ajmb.2021.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Exopolysaccharides (EPSs) are high molecular weight polysaccharides secreted by microorganisms in the surrounding environment. In addition to the favorable benefits of these compounds for microorganisms, including microbial cell protection, they are used in various food, pharmaceutical, and cosmetic industries. Investigating the functional and health-promoting characteristics of microbial EPS, identifying the isolation method of these valuable compounds, and their applications in the food industry are the objectives of this study. EPS are used in food industries as thickeners, gelling agents, viscosifiers, and film formers. The antioxidative, anticancer, prebiotic, and cholesterol-lowering effects of some of these compounds make it possible to use them in functional food production.
Collapse
Affiliation(s)
- Sara Basiri
- Department of Food Hygiene and Public Health, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| |
Collapse
|
8
|
Microbial gums: introducing a novel functional component of edible coatings and packaging. Appl Microbiol Biotechnol 2019; 103:6853-6866. [DOI: 10.1007/s00253-019-09966-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 06/06/2019] [Accepted: 06/06/2019] [Indexed: 02/07/2023]
|
9
|
Sapper M, Wilcaso P, Santamarina MP, Roselló J, Chiralt A. Antifungal and functional properties of starch-gellan films containing thyme (Thymus zygis) essential oil. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.05.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Grande-Tovar CD, Chaves-Lopez C, Serio A, Rossi C, Paparella A. Chitosan coatings enriched with essential oils: Effects on fungi involved in fruit decay and mechanisms of action. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.019] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Mahmood K, Kamilah H, Shang PL, Sulaiman S, Ariffin F, Alias AK. A review: Interaction of starch/non-starch hydrocolloid blending and the recent food applications. FOOD BIOSCI 2017. [DOI: 10.1016/j.fbio.2017.05.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
12
|
Sakloetsakun D, Pongjanyakul T. Modification of gellan gum films by halloysite: physicochemical evaluation and drug permeation properties. Drug Dev Ind Pharm 2016; 43:492-501. [PMID: 27900918 DOI: 10.1080/03639045.2016.1267202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The aim of this study was to determine the potential of gellan gum (GG) and halloysite (HS) dispersions at different mixing ratios and to investigate the potential of GG-HS dispersions in film formation. To this end, the dispersions and films were characterized. The dispersions formed films with large particles ranging from 3 to 4 μm in size, with a zeta potential of ∼-35 mV. The GG-HS films were fabricated using a solvent-casting technique, which generated films with a white opaque appearance and rough surface. The GG-HS films were formed via hydrogen bonding and electrostatic interactions at the inner cavity and outer surface, as confirmed by ATR-FTIR spectroscopy and X-ray diffractometry. The %water uptake and erosion of the GG-HS film decreased with increasing HS content, whereas both puncture strength and elongation were increased in the GG-HS ratios of 1:0.4 and 1:1.2. Moreover, addition of HS into the GG films could possibly decrease drug permeability coefficient when using higher HS ratio in acidic and neutral media. These results suggested that HS modifies the characteristics of the GG used to coat modified-release tablets.
Collapse
Affiliation(s)
- Duangkamon Sakloetsakun
- a Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Khon Kaen University , Khon Kaen , Thailand
| | - Thaned Pongjanyakul
- a Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , Khon Kaen University , Khon Kaen , Thailand
| |
Collapse
|
13
|
Ferreira ARV, Alves VD, Coelhoso IM. Polysaccharide-Based Membranes in Food Packaging Applications. MEMBRANES 2016; 6:E22. [PMID: 27089372 PMCID: PMC4931517 DOI: 10.3390/membranes6020022] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 03/31/2016] [Accepted: 04/07/2016] [Indexed: 11/22/2022]
Abstract
Plastic packaging is essential nowadays. However, the huge environmental problem caused by landfill disposal of non-biodegradable polymers in the end of life has to be minimized and preferentially eliminated. The solution may rely on the use of biopolymers, in particular polysaccharides. These macromolecules with film-forming properties are able to produce attracting biodegradable materials, possibly applicable in food packaging. Despite all advantages of using polysaccharides obtained from different sources, some drawbacks, mostly related to their low resistance to water, mechanical performance and price, have hindered their wider use and commercialization. Nevertheless, with increasing attention and research on this field, it has been possible to trace some strategies to overcome the problems and recognize solutions. This review summarizes some of the most used polysaccharides in food packaging applications.
Collapse
Affiliation(s)
- Ana R V Ferreira
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| | - Vítor D Alves
- LEAF-Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisboa 1349-017, Portugal.
| | - Isabel M Coelhoso
- LAQV-REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, Caparica 2829-516, Portugal.
| |
Collapse
|
14
|
Danalache F, Carvalho CY, Alves VD, Moldão-Martins M, Mata P. Optimisation of gellan gum edible coating for ready-to-eat mango (Mangifera indica L.) bars. Int J Biol Macromol 2016; 84:43-53. [DOI: 10.1016/j.ijbiomac.2015.11.079] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 11/26/2015] [Accepted: 11/26/2015] [Indexed: 11/28/2022]
|
15
|
Improvement of water solubility and humidity stability of tapioca starch film by incorporating various gums. Lebensm Wiss Technol 2015. [DOI: 10.1016/j.lwt.2015.05.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
16
|
Vijayendra SVN, Shamala TR. Film forming microbial biopolymers for commercial applications—A review. Crit Rev Biotechnol 2013; 34:338-57. [DOI: 10.3109/07388551.2013.798254] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|