1
|
Xiao S, Li D, Tang Z, Wei H, Zhang Y, Yang J, Zhao C, Liu Y, Wang W. Supplementary UV-B Radiation Effects on Photosynthetic Characteristics and Important Secondary Metabolites in Eucommia ulmoides Leaves. Int J Mol Sci 2023; 24:ijms24098168. [PMID: 37175879 PMCID: PMC10178938 DOI: 10.3390/ijms24098168] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
To explore the effects of ultraviolet light supplementation on the photosynthetic characteristics and content of secondary metabolites in the leaves of Eucommia ulmoides Oliver (E. ulmoides), the effects of supplementary UV-B (sUV-B) radiation on the medicinally active components of E. ulmoides were comprehensively evaluated. In our study, we selected leaves of five-year-old E. ulmoides seedlings as experimental materials and studied the effect of supplemental ultraviolet-B (sUV-B) radiation on growth, photosynthetic parameters, photosynthetic pigments, fluorescence parameters, and secondary metabolites of E. ulmoides using multivariate analysis. The results showed that the leaf area and the number of branches increased after sUV-B radiation, which indicated that sUV-B radiation was beneficial to the growth of E. ulmoides. The contents of chlorophyll a and chlorophyll b increased by 2.25% and 4.25%, respectively; the net photosynthetic rate increased by 5.17%; the transpiration rate decreased by 35.32%; the actual photosynthetic efficiency increased by 10.64%; the content of the secondary metabolite genipin increased by 12.9%; and the content of chlorogenic acid increased by 75.03%. To identify the genes that may be related to the effects of sUV-B radiation on the growth and development of E. ulmoides leaves and important secondary metabolites, six cDNA libraries were prepared from natural sunlight radiation and sUV-B radiation in E. ulmoides leaves. Comparative analysis of both transcriptome databases revealed a total of 3698 differential expression genes (DEGs), including 1826 up-regulated and 1872 down-regulated genes. According to the KOG database, the up-regulated unigenes were mainly involved in signal transduction mechanisms [T] and cell wall/membrane biogenesis [M]. It is also involved in plant hormone signal transduction and phenylpropanoid biosynthesis metabolic pathways by the KEGG pathway, which might further affect the physiological indices and the content of chlorogenic acid, a secondary metabolite of E. ulmoides. Furthermore, 10 candidate unigenes were randomly selected to examine gene expression using qRT-PCR, and the six libraries exhibited differential expression and were identical to those obtained by sequencing. Thus, the data in this study were helpful in clarifying the reasons for leaf growth after sUV-B radiation. And it was beneficial to improve the active components and utilization rate of E. ulmoides after sUV-B radiation.
Collapse
Affiliation(s)
- Siqiu Xiao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Dewen Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Zhonghua Tang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Hongling Wei
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ying Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Jing Yang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Chunjian Zhao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Ying Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
| | - Wei Wang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Engineering Research Center of Forest Bio-Preparation, Ministry of Education, Northeast Forestry University, Harbin 150040, China
- Institute of Advance Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| |
Collapse
|
3
|
Hock M, Plos C, Sporbert M, Erfmeier A. Combined Effects of UV-B and Drought on Native and Exotic Populations of Verbascum thapsus L. PLANTS (BASEL, SWITZERLAND) 2020; 9:E269. [PMID: 32085564 PMCID: PMC7076424 DOI: 10.3390/plants9020269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/31/2022]
Abstract
During plant invasions, exotic species have to face new environmental challenges and are affected by interacting components of global change, which may include more stressful environmental conditions. We investigated an invasive species of New Zealand grasslands, commonly exposed to two concomitant and limiting abiotic factors-high levels of ultraviolet-B radiation and drought. The extent to which Verbascum thapsus may respond to these interacting stress factors via adaptive responses was assessed in a greenhouse experiment comprising native German plants and plants of exotic New Zealand origins. Plants from both origins were grown within four treatments resulting from the crossed combinations of two levels of UV-B and drought. Over twelve weeks, we recorded growth, morphological characteristics, physiological responses and productivity. The results showed that drought stress had the strongest effect on biomass, morphology and physiology. Significant effects of UV-B radiation were restricted to variables of leaf morphology and physiology. We found neither evidence for additive effects of UV-B and drought nor origin-dependent stress responses that would indicate local adaptation of native or exotic populations. We conclude that drought-resistant plant species might be predisposed to handle high UV-B levels, but emphasize the importance of setting comparable magnitudes in stress levels when testing experimentally for antagonistic interaction effects between two manipulated factors.
Collapse
Affiliation(s)
- Maria Hock
- Kiel University, Institute for Ecosystem Research/Geobotany, Olshausenstr. 75, 24118 Kiel, Germany;
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108 Halle, Germany; (C.P.); (M.S.)
| | - Carolin Plos
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108 Halle, Germany; (C.P.); (M.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany
| | - Maria Sporbert
- Martin Luther University Halle-Wittenberg, Institute of Biology/Geobotany and Botanical Garden, Am Kirchtor 1, 06108 Halle, Germany; (C.P.); (M.S.)
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany
- Friedrich Schiller University Jena, Institute of Ecology and Evolution/Plant Biodiversity, Philosophenweg 16, 07743 Jena, Germany
| | - Alexandra Erfmeier
- Kiel University, Institute for Ecosystem Research/Geobotany, Olshausenstr. 75, 24118 Kiel, Germany;
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, 04103 Leipzig, Germany
| |
Collapse
|
4
|
Faseela P, Puthur JT. Intraspecific variation in sensitivity of high yielding rice varieties towards UV-B radiation. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2019; 25:727-740. [PMID: 31168235 PMCID: PMC6522621 DOI: 10.1007/s12298-019-00646-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 05/14/2023]
Abstract
Effective screening of thirteen commonly cultivated rice (Oryza sativa L.) varieties was carried out to evaluate the varietal-specific differences in morphological, physiological and biochemical responses to various doses of UV-B irradiation (7, 14, 21 and 28 kJ m-2d-1). Determination of UV-B tolerant rice varieties would be helpful in selecting a suitable variety for the areas experiencing higher influx of UV-B radiation. Based on the initial screening of thirteen rice varieties, carried out by analyzing shoot length, fresh weight, photosynthetic pigments and the rate of lipid peroxidation under various doses of UV-B, it was found that Mangalamahsuri, Aathira, Kanchana, Jyothi and Annapoorna were tolerant lines and Neeraja, Swetha, Swarnaprabha and Aiswarya were the sensitive ones. Further screening of these nine varieties was done by analyzing primary metabolites (total protein, soluble sugar and proline content) and non enzymatic antioxidants (ascorbate and glutathione) involved in free radical scavenging mechanism to mitigate the negative effects of UV-B irradiation. Based on the cumulative stress response index (CSRI), the sum of relative individual component responses (total protein, soluble sugar, proline, ascorbate and glutathione content) at each UV-B treatment and total stress response index (TSRI), the sum of CSRI of all the four UV-B treatments for each variety, nine rice varieties selected after primary screening were classified as tolerant (Mangalamahsuri, Aathira and Kanchana), intermediate (Jyothi, Annapoorna, Neeraja and Swetha) and sensitive (Swarnaprabha and Aiswarya).
Collapse
Affiliation(s)
- Parammal Faseela
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malappuram, Kerala 673635 India
| | - Jos Thomas Puthur
- Plant Physiology and Biochemistry Division, Department of Botany, University of Calicut, Malappuram, Kerala 673635 India
| |
Collapse
|
5
|
Hock M, Hofmann RW, Müller C, Erfmeier A. Exotic plant species are locally adapted but not to high ultraviolet-B radiation: a reciprocal multispecies experiment. Ecology 2019; 100:e02665. [PMID: 30770567 DOI: 10.1002/ecy.2665] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 12/21/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
Abstract
Ultraviolet (UV) radiation intensities differ among global regions, with significantly higher levels in the southern hemisphere. UV-B may act as an environmental filter during plant invasions, which might particularly apply to plant species from Europe introduced to New Zealand. Just like for any other abiotic or biotic filter, successful invaders can cope with novel environmental conditions via plastic responses and/or through rapid adaptation by natural selection in the exotic range. We conducted a multispecies experiment with herbaceous plants in two common gardens located in the species' native and exotic ranges, in Germany and New Zealand, respectively. We used plants of German and New Zealand origin of eight species to test for adaptation to higher UV-B radiation in their new range. In each common garden, all plants were exposed to three radiation treatments: (1) ambient sunlight, (2) exclusion of UV-B while transmitting ambient UV-A, and (3) combined exclusion of UV-B and UV-A. Linear mixed-effect models revealed significant effects of UV-B on growth and leaf traits and an indication for UV-B-induced biomass reduction in both common gardens pointing to an impact of natural, ambient UV radiation intensities experienced by plants in the northern and in the southern hemisphere. In both common gardens, the respective local plants (i.e., German origins in Germany, New Zealand origins in New Zealand) displayed enhanced productivity and aboveground biomass allocation, thus providing evidence for recent evolutionary processes in the exotic range. Genetic differentiation between different origins in consequence of divergent local selection pressures was found for specific leaf area. This differentiation particularly hints at different selective forces in both ranges while only little evidence was found for an immediate selective effect of high UV-B intensities in the exotic range. However, reaction norm slopes across ranges revealed higher plasticity of exotic individuals in functional leaf traits that might allow for a more sensitive regulation of photoprotection measures in response to UV-B. During the colonization, New Zealand populations might have been selected for the observed higher phenotypic plasticity and a consequently increased ability to successfully spread in the exotic range.
Collapse
Affiliation(s)
- Maria Hock
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle, 06108, Germany
| | - Rainer W Hofmann
- Faculty of Agriculture and Life Sciences, Lincoln University, Ellesmere Junction Road/Springs Road, Lincoln, 7647, New Zealand
| | - Caroline Müller
- Faculty of Biology/Chemical Ecology, Bielefeld University, Universitätsstraße 25, Bielefeld, 33615, Germany
| | - Alexandra Erfmeier
- Institute for Ecosystem Research/Geobotany, Kiel University, Olshausenstrasse 75, Kiel, 24118, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5E, Leipzig, 04103, Germany
| |
Collapse
|