1
|
Buha Marković JZ, Marinković AD, Savić JZ, Mladenović MR, Erić MD, Marković ZJ, Ristić MĐ. Risk Evaluation of Pollutants Emission from Coal and Coal Waste Combustion Plants and Environmental Impact of Fly Ash Landfilling. TOXICS 2023; 11:396. [PMID: 37112623 PMCID: PMC10144006 DOI: 10.3390/toxics11040396] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/06/2023] [Accepted: 04/15/2023] [Indexed: 06/19/2023]
Abstract
Emission factors (EFs) of gaseous pollutants, particulate matter, certain harmful trace elements, and polycyclic aromatic hydrocarbons (PAHs) from three thermal power plants (TPPs) and semi-industrial fluidized bed boiler (FBB) were compared. EFs of particulate matter, trace elements (except Cd and Pb), benzo[a]pyrene, and benzo[b]fluoranthene exceed the upper limits specified in the EMEP inventory guidebook for all combustion facilities. The comparison of trace elements and PAHs content in fly ashes (FAs) from lignite and coal waste combustion in TPPs and FBB, respectively, as well as the potential environmental impact of FAs disposal, was performed by employing a set of ecological indicators such as crustal enrichment factor, risk assessment code, risk indices for trace elements, and benzo[a]pyrene equivalent concentration for PAHs. Sequential analysis shows that the trace elements portion is the lowest for water-soluble and exchangeable fractions. The highest enrichment levels in FAs are noticed for As and Hg. Based on toxic trace elements content, FAs from TPPs represent a very high ecological risk, whereas fly ash from FBB poses a moderate ecological risk but has the highest benzo[a]pyrene equivalent concentration, indicating its increased carcinogenic potential. Lead isotope ratios for Serbian coals and FAs can contribute to a lead pollution global database.
Collapse
Affiliation(s)
- Jovana Z Buha Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Ana D Marinković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Jasmina Z Savić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Milica R Mladenović
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Milić D Erić
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Zoran J Marković
- Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, University of Belgrade, Mike Petrovića Alasa 12-14, 11351 Belgrade, Serbia
| | - Mirjana Đ Ristić
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11120 Belgrade, Serbia
| |
Collapse
|
2
|
Li D, Zhou Y, Ding H, Chang L, Fu N, Wang X, Tao X. Removing BaP from soil by biochar prepared with medicago and corn straw using batch and solid-phase extraction method. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:4209-4218. [PMID: 36226683 DOI: 10.1039/d2ay00823h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Low-cost materials with a highly efficient adsorption capability prepared from corn straw and medicago (abbreviated to CB and MB), which can effectively remove benzo(a)pyrene (BaP) from contaminated soil, were prepared at a temperature of 350 °C under limited-oxygen conditions. The appearance traits, contents of C, H, N and functional group types of CB and MB were obtained by SEM, elemental analysis and FT-IR. Through the batch method, it was found that the adsorption of BaP by CB and MB was in accordance with pseudo-secondary kinetics because the correlation coefficients are 0.855 with CB and 0.948 with MB, respectively, and the maximum adsorption capacity in the fitting (CB: 78.2 mg kg-1, MB: 88.8 mg kg-1) was consistent with the actual measurement (CB: 79.8 mg kg-1, MB: 89.3 mg kg-1). Freundlich and Langmuir equations can well describe the isothermal adsorption data of CB and MB due to the correlation coefficients all being greater than 0.87. Soil samples treated with ASE were separated by solid-phase extraction (SPE) with different biochar contents in packed columns. It was found that the contributions of CB and MB to the removal of BaP increased from 58.5% and 60.4% to 80.6% and 82.1%, respectively, which could effectively reduce BaP in polluted soil.
Collapse
Affiliation(s)
- Dandan Li
- Gansu Province Environmental Monitoring Center, No. 225, Yanerwan Road, Chengguan District, Lanzhou City, Gansu Province, China.
| | - Yi'an Zhou
- Gansu Province Environmental Monitoring Center, No. 225, Yanerwan Road, Chengguan District, Lanzhou City, Gansu Province, China.
| | - Haixia Ding
- Gansu Province Environmental Monitoring Center, No. 225, Yanerwan Road, Chengguan District, Lanzhou City, Gansu Province, China.
| | - Lu Chang
- Gansu Province Environmental Monitoring Center, No. 225, Yanerwan Road, Chengguan District, Lanzhou City, Gansu Province, China.
| | - Ning Fu
- Gansu Province Environmental Monitoring Center, No. 225, Yanerwan Road, Chengguan District, Lanzhou City, Gansu Province, China.
| | - Xia Wang
- Gansu Province Environmental Monitoring Center, No. 225, Yanerwan Road, Chengguan District, Lanzhou City, Gansu Province, China.
| | - Xuemei Tao
- Gansu Province Environmental Monitoring Center, No. 225, Yanerwan Road, Chengguan District, Lanzhou City, Gansu Province, China.
| |
Collapse
|
3
|
Biochar: Production, Applications, and Market Prospects in Portugal. ENVIRONMENTS 2022. [DOI: 10.3390/environments9080095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Biochar produced during the thermochemical decomposition of biomass is an environmentally friendly replacement for different carbon materials and can be used for carbon sequestration to mitigate climate change. In this paper, current biochar production processes and top market applications are reviewed, as well as emerging biochar uses gaining momentum in the market. Various application fields of biochar, including agricultural applications (e.g., soil conditioning), adsorption (for soil and water pollutants), carbon sequestration, catalysis, or incorporation into composites or construction materials, are also presented and discussed. According to this literature overview, slow pyrolysis is the preferred process for biochar production, whereas agricultural applications (for soil conditioning and fertilization) are the most studied and market-ready solutions for biochar use. The Alentejo region (Portugal) shows tremendous potential to be a major player in the developing biochar market considering feedstock availability and large areas for biochar agricultural application. Biochar’s production potential and possible benefits were also estimated for this Portuguese region, proving that agricultural application can effectively lead to many environmental, economic, and social gains.
Collapse
|
4
|
Plant Nutrient Availability and pH of Biochars and Their Fractions, with the Possible Use as a Component in a Growing Media. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy10010010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Biochar has the potential to be used as a growing media component, and therefore plays a role in reducing peat usage. It has unique properties apart from the ability to sequester carbon. Here we investigated the nutrient contents of four commercial biochars and their fractions. The biochars’ feedstock was wood waste, except for one with paper fibres and husk. The fine or finer fractions in wood waste biochars contained higher levels of nutrients that were available to plants. The coarse fraction of the biochar derived from husk and paper fibre feedstock had a higher level of total N, P and K in contrast to the other three biochars. The pH of the finer fraction (pH of 9.08) was also higher compared with coarse fraction (pH of 8.71). It is important that when biochar a is used as a component of a peat based growing media, particle size information should be provided, as fractions from the same biochar can have different levels of total extractable nutrients and pH levels. If biochar is used to replace or reduce lime application rates of a peat-biochar mixtures, one must take into account the levels of total and extractable Ca and Mg levels, as these can vary. The variation of these elements was not only between biochars’ feedstocks, even at similar pH-values, but within different fractions in the same biochar. We concluded that biochars should be characterized from the feedstock as well as from the particle size aspect, as it could have a profound effect on nutrient availability of Ca and Mg. This could lead to nutrient imbalances in cultivating plants on substrate mixtures. In addition to nutrient ratios, the suitable pH-level for a given grown species should be adjusted.
Collapse
|
5
|
Prodana M, Silva C, Gravato C, Verheijen FGA, Keizer JJ, Soares AMVM, Loureiro S, Bastos AC. Influence of biochar particle size on biota responses. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 174:120-128. [PMID: 30825734 DOI: 10.1016/j.ecoenv.2019.02.044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/15/2019] [Accepted: 02/13/2019] [Indexed: 06/09/2023]
Abstract
Despite the increasing interest for biochar as a soil amendment, a knowledge gap remains on its impacts on non-target soil and aquatic species. We hypothesised that biochar particle size and application rate can play a role in the toxicity to biota. Pine woodchip biochar was incorporated in a clean soil at three particle size classes: small (<0.5 mm), medium (1-2 mm), and large (<4 mm), and at two concentrations: 1% and 6% w/w. A laboratory screening with earthworm Eisenia andrei avoidance behaviour bioassay was carried out to test the most adequate application rates, particle sizes and soil-biochar pre-incubation period. Thereafter, a 28-day greenhouse microcosm experiment was conducted as an ecologically more representative approach. Survival, vertical distribution and weight changes of E. andrei, and bait-lamina consumption were recorded. Soil leachates from the microcosms were collected to evaluate their impact on Daphnia magna immobilisation and Vibrio fischeri (Microtox®) bioluminescence. A feeding experiment with E. andrei was also performed to address earthworm weight changes and to conduct a screening of PAH-type metabolites in their tissue. The 6% <0.5 mm treatment pre-incubated for 96 h induced significant avoidance of the earthworms. Significantly lower bait-lamina consumption was observed in microcosms for the 6% <0.5 mm treatment. Moreover, particle size was a statistically significant factor regarding the loss of weight in the feeding experiment and higher concentration of naphthalene-type metabolites detected in E. andrei tissue, when exposed to <0.5 mm biochar particles. The leachates had no adverse effects on the aquatic species. The results suggest that particles <0.5 mm of pine woodchip biochar can pose sub-lethal effects on soil biota.
Collapse
Affiliation(s)
- M Prodana
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal.
| | - C Silva
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - C Gravato
- Faculty of Sciences and CESAM (Centre for Environmental and Marine Studies), University of Lisbon, 1749-016 Lisbon, Portugal
| | - F G A Verheijen
- Department of Environment and Planning and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - J J Keizer
- Department of Environment and Planning and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - A M V M Soares
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - S Loureiro
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal
| | - A C Bastos
- Department of Biology and CESAM (Centre for Environmental and Marine Studies), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|