1
|
Azam I, Benson JD. Multiscale transport and 4D time-lapse imaging in precision-cut liver slices (PCLS). PeerJ 2024; 12:e16994. [PMID: 38426134 PMCID: PMC10903333 DOI: 10.7717/peerj.16994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/01/2024] [Indexed: 03/02/2024] Open
Abstract
Background Monitoring cellular processes across different levels of complexity, from the cellular to the tissue scale, is important for understanding tissue structure and function. However, it is challenging to monitor and estimate these structural and dynamic interactions within three-dimensional (3D) tissue models. Objective The aim of this study was to design a method for imaging, tracking, and quantifying 3D changes in cell morphology (shape and size) within liver tissue, specifically a precision-cut liver slice (PCLS). A PCLS is a 3D model of the liver that allows the study of the structure and function of liver cells in their native microenvironment. Methods Here, we present a method for imaging liver tissue during anisosmotic exposure in a multispectral four-dimensional manner. Three metrics of tissue morphology were measured to quantify the effects of osmotic stress on liver tissue. We estimated the changes in the volume of whole precision cut liver slices, quantified the changes in nuclei position, and calculated the changes in volumetric responses of tissue-embedded cells. Results During equilibration with cell-membrane-permeating and non-permeating solutes, the whole tissue experiences shrinkage and expansion. As nuclei showed a change in position and directional displacement under osmotic stress, we demonstrate that nuclei could be used as a probe to measure local osmotic and mechanical stress. Moreover, we demonstrate that cells change their volume within tissue slices as a result of osmotic perturbation and that this change in volume is dependent on the position of the cell within the tissue and the duration of the exposure. Conclusion The results of this study have implications for a better understanding of multiscale transport, mechanobiology, and triggered biological responses within complex biological structures.
Collapse
Affiliation(s)
- Iqra Azam
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
2
|
Poeira RG, Siopa D, Anacleto P, Sadewasser S, Dale PJ. Optical Measurement of the Stoichiometry of Thin-Film Compounds Synthetized From Multilayers: Example of Cu(In,Ga)Se2. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2023; 29:1847-1855. [PMID: 37850643 DOI: 10.1093/micmic/ozad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/26/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
The properties of centimeter-sized thin-film compound semiconductors depend upon the morphology and chemical composition of the multiple submicrometer-thick elemental and alloy precursor layers from which they are synthesized. The challenge is to characterize the individual precursor layers over these length scales during a multistep synthesis without altering or contaminating them. Conventional electron and X-ray-based morphological and compositional techniques are invasive, require preparation, and are thus incompatible with in-line synthesis processes. In a proof-of-concept study, we applied confocal laser scanning microscopy (CLSM) as a noninvasive optical imaging technique, which measures three-dimensional surface profiles with nanoscale resolution, to this challenge. Using an array of microdots containing Cu(In,Ga)Se2 semiconductor layers for solar cells as an example, we performed CLSM correlative studies to quantify morphological and layer thickness changes during four stages of a thin-film compound synthesis. Using simple assumptions, we measured the micrometer-scale spatially resolved chemical composition of stacked precursor layers to predict the final material phases formed and predict relative device performance. The high spatial resolution, coupled with the ability to measure sizeable areas without influencing the synthesis at high speed, makes CLSM an excellent prospect for research and quality control tool for thin films.
Collapse
Affiliation(s)
- Ricardo G Poeira
- Department of Physics and Materials Science, University of Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Daniel Siopa
- Department of Physics and Materials Science, University of Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| | - Pedro Anacleto
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Sascha Sadewasser
- INL-International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal
| | - Phillip J Dale
- Department of Physics and Materials Science, University of Luxembourg, 41, rue du Brill, L-4422 Belvaux, Luxembourg
| |
Collapse
|
3
|
Zhan YJ, Zhang SW, Zhu S, Jiang N. Tissue Clearing and Its Application in the Musculoskeletal System. ACS OMEGA 2023; 8:1739-1758. [PMID: 36687066 PMCID: PMC9850472 DOI: 10.1021/acsomega.2c05180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
The musculoskeletal system is an integral part of the human body. Currently, most skeletal muscle research is conducted through conventional histological sections due to technological limitations and the structure of skeletal muscles. For studying and observing bones and muscles, there is an urgent need for three-dimensional, objective imaging technologies. Optical tissue-clearing technologies seem to offer a novel and accessible approach to research of the musculoskeletal system. Using this approach, the components which cause refraction or prevent light from penetrating into the tissue are physically and chemically eliminated; then the liquid in the tissue is replaced with high-refractive-index chemicals. This innovative method, which allows three-dimensional reconstruction at the cellular and subcellular scale, significantly improves imaging depth and resolution. Nonetheless, this technology was not originally developed to image bones or muscles. When compared with brain and nerve organs which have attracted considerable attention in this field, the musculoskeletal system contains fewer lipids and has high levels of hemoglobin, collagen fibers, and inorganic hydroxyapatite crystals. Currently, three-dimensional imaging methods are widely used in the diagnosis and treatment of skeletal and muscular illnesses. In this regard, it is vitally important to review and evaluate the optical tissue-clearing technologies currently employed in the musculoskeletal system, so that researchers may make an informed decision. In the meantime, this study offers guidelines and recommendations for expanding the use of this technology in the musculoskeletal system.
Collapse
Affiliation(s)
- Yan-Jing Zhan
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Shi-Wen Zhang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - SongSong Zhu
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Nan Jiang
- State
Key Laboratory of Oral Diseases & National Clinical Research Center
for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- West
China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
4
|
Ayariga JA, Huang H, Dean D. Decellularized Avian Cartilage, a Promising Alternative for Human Cartilage Tissue Regeneration. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1974. [PMID: 35269204 PMCID: PMC8911734 DOI: 10.3390/ma15051974] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/17/2022] [Accepted: 03/02/2022] [Indexed: 02/05/2023]
Abstract
Articular cartilage defects, and subsequent degeneration, are prevalent and account for the poor quality of life of most elderly persons; they are also one of the main predisposing factors to osteoarthritis. Articular cartilage is an avascular tissue and, thus, has limited capacity for healing and self-repair. Damage to the articular cartilage by trauma or pathological causes is irreversible. Many approaches to repair cartilage have been attempted with some potential; however, there is no consensus on any ideal therapy. Tissue engineering holds promise as an approach to regenerate damaged cartilage. Since cell adhesion is a critical step in tissue engineering, providing a 3D microenvironment that recapitulates the cartilage tissue is vital to inducing cartilage regeneration. Decellularized materials have emerged as promising scaffolds for tissue engineering, since this procedure produces scaffolds from native tissues that possess structural and chemical natures that are mimetic of the extracellular matrix (ECM) of the native tissue. In this work, we present, for the first time, a study of decellularized scaffolds, produced from avian articular cartilage (extracted from Gallus Gallus domesticus), reseeded with human chondrocytes, and we demonstrate for the first time that human chondrocytes survived, proliferated and interacted with the scaffolds. Morphological studies of the decellularized scaffolds revealed an interconnected, porous architecture, ideal for cell growth. Mechanical characterization showed that the decellularized scaffolds registered stiffness comparable to the native cartilage tissues. Cell growth inhibition and immunocytochemical analyses showed that the decellularized scaffolds are suitable for cartilage regeneration.
Collapse
Affiliation(s)
| | | | - Derrick Dean
- The Biomedical Engineering Program, College of Science, Technology, Engineering and Mathematics (C-STEM), Alabama State University, 1627 Hall Street, Montgomery, AL 36104, USA; (J.A.A.); (H.H.)
| |
Collapse
|
5
|
Tschaikowsky M, Selig M, Brander S, Balzer BN, Hugel T, Rolauffs B. Proof-of-concept for the detection of early osteoarthritis pathology by clinically applicable endomicroscopy and quantitative AI-supported optical biopsy. Osteoarthritis Cartilage 2021; 29:269-279. [PMID: 33220445 DOI: 10.1016/j.joca.2020.10.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 09/30/2020] [Accepted: 10/14/2020] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Clinical trials for osteoarthritis (OA), the leading cause of global disability, are unable to pinpoint the early, potentially reversible disease with clinical technology. Hence, disease-modifying drug candidates cannot be tested early in the disease. To overcome this obstacle, we asked whether early OA-pathology detection is possible with current clinical technology. METHODS We determined the relationship between two sensitive early OA markers, atomic force microscopy (AFM)-measured human articular cartilage (AC) surface stiffness, and location-matched superficial zone chondrocyte spatial organizations (SCSOs), asking whether a significant loss of surface stiffness can be detected in early OA SCSO stages. We then tested whether current clinical technology can visualize and accurately diagnose the SCSOs using an approved probe-based confocal laser-endomicroscope and a random forest (RF) model. RESULTS We demonstrated a correlation between AC surface stiffness and the SCSO (rrm = -0.91; 95%CI: -0.97, -0.73), and an extensive loss of surface stiffness specifically in those ACs with early OA-typical SCSO (95%CIs: string SCSO: 269-173 kPa, double string SCSO: 77-46 kPa). This established the SCSO as a visualizable, functionally relevant surrogate marker of early OA AC surface pathology. Moreover, SCSO-based stiffness discrimination worked well in each patient's AC. We then demonstrated feasibility of visualizing the SCSO by clinical laser-endomicroscopy and, importantly, accurate SCSO diagnosis using RF. CONCLUSION We present the proof-of-concept of early OA-pathology detection with available clinical technology, introducing a future-oriented, AI-supported, non-destructive quantitative optical biopsy for early disease detection. Operationalizing SCSO recognition, this approach allows testing for correlations between local tissue architectures with other experimental and clinical read-outs, but needs clinical validation and a larger sample size for defining diagnostic thresholds.
Collapse
Affiliation(s)
- M Tschaikowsky
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany; G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - M Selig
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany
| | - S Brander
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - B N Balzer
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany; Cluster of Excellence LivMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany
| | - T Hugel
- Institute of Physical Chemistry, Albert-Ludwigs-University Freiburg, Albertstr. 21, 79104, Freiburg, Germany; Cluster of Excellence LivMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, Freiburg, Germany.
| | - B Rolauffs
- G.E.R.N. Research Center for Tissue Replacement, Regeneration & Neogenesis, Department of Orthopedics and Trauma Surgery, Medical Center - Albert-Ludwigs-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Germany.
| |
Collapse
|
6
|
Abughazaleh N, Abusara Z, Krawetz R, Herzog W. The influence of maximal and submaximal cyclic concentric and eccentric exercise on chondrocyte death and synovial fluid proteins in the rabbit knee. Clin Biomech (Bristol, Avon) 2020; 78:105095. [PMID: 32590144 DOI: 10.1016/j.clinbiomech.2020.105095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mechanical stimulation of joints regulates the biosynthetic activity of chondrocytes. It has been argued that excessive loading might cause chondrocyte death, leading to degeneration of cartilage and cause osteoarthritis. The aims of this study were to apply a high, short-term loading, and a low intensity, long-term loading protocol to intact joints in life animals and determine changes in synovial fluid and the percentage of dead cells in rabbit knee cartilage. METHOD Nine rabbits were subjected to unilateral exercise loading consisting of five sets of 10 maximal eccentric knee contractions. Another 6 rabbits were subjected to submaximal concentric contractions for 30 min at 20% of the maximum isometric knee extensor force. Contralateral joints served as unloaded controls. Cell viability was assessed using confocal microscopy. Synovial fluid was analyzed for total protein concentration and total number of identifiable proteins and was compared to protein content of control rabbits (n = 4). FINDINGS Neither the high-intensity, short-term nor the low-intensity, long-term loading protocol caused increased chondrocyte death compared to the unloaded control joints. Total synovial fluid protein concentration was the same before and after exercise. Following the high-intensity exercise protocol, the number of identifiable proteins was decreased, while following the low-intensity exercise protocol, the number of identifiable proteins was increased compared to control. INTERPRETATION Chondrocytes are well protected in the intact joint and withstood maximal eccentric muscular loading, and maximal endurance loading. Synovial fluid protein content was changed after exercise, and these changes depended crucially on the type of loading.
Collapse
Affiliation(s)
- Nada Abughazaleh
- Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada.
| | - Ziad Abusara
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Advanced Imaging and Histopathology Core, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Roman Krawetz
- Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Department of Cell Biology and Anatomy, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Walter Herzog
- Biomedical Engineering, University of Calgary, 2500 University Drive NW, Calgary, AB T2N 1N4, Canada; Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, AB, Canada; Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianopolis, SC, Brazil
| |
Collapse
|
7
|
Cruz MAE, Soares MPR, Pazin W, Ito AS, Fukada SY, Ciancaglini P, Ramos AP. Interface-driven Sr-morin complexation at Langmuir monolayers for bioactive coating design. Colloids Surf B Biointerfaces 2019; 181:856-863. [PMID: 31382333 DOI: 10.1016/j.colsurfb.2019.06.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 06/07/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022]
Abstract
Flavonoid-metal complexes are widely studied because of their interesting luminescent behavior and biological activity. Despite the extensive exploration of flavonoid-metal coordination processes in solution, the formation of complexes using the flavonoid molecule inserted in a lipid membrane has been little investigated. This effect could provide important insight into the biological activity of flavonoids at lipid membranes and could represent an attractive strategy to design supramolecular structures. Here, we studied the complexation between Sr2+ and morin inserted in an octadecylphosphonic acid (OPA) Langmuir monolayer. This is a relevant system due to the synergism imposed by the association of the Sr2+ ability to control bone formation/resorption with the morin antioxidative effect. Morin incorporation into the OPA monolayers and further Sr2+ complexation were monitored by surface pressure isotherms. Electronic absorption spectroscopy and fluorescence techniques showed Sr-morin complexation both in solution and at the air-liquid interface. Although morin complexation has been described to occur only at basic pH, the specific thermodynamic properties at the air-liquid interface drove metal complexation. LB films were deposited on Ti surfaces, and the resulting OPA/Sr-morin coatings exhibited high surface free energy and increase on its polar component. This optimized surface feature supported further serum protein adsorption and osteoblast growth and differentiation, indicating that these lipid-based coatings are promising for bioactive coating design. This study paves the way for the use of this lipid-based coating in the design of implants for faster osteointegration. Moreover, flavonoid-metal complexation at membranes could also help to shed light on the biological role played by flavonoids.
Collapse
Affiliation(s)
- M A E Cruz
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Departamento de Química, Brazil
| | - M P R Soares
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - W Pazin
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Departamento de Física, Brazil; Faculdade de Ciências e Tecnologia, Universidade Estadual Paulista, Departamento de Física, Brazil
| | - A S Ito
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Departamento de Física, Brazil
| | - S Y Fukada
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Brazil
| | - P Ciancaglini
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Departamento de Química, Brazil
| | - A P Ramos
- Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Departamento de Química, Brazil.
| |
Collapse
|
8
|
Hall AC. The Role of Chondrocyte Morphology and Volume in Controlling Phenotype-Implications for Osteoarthritis, Cartilage Repair, and Cartilage Engineering. Curr Rheumatol Rep 2019; 21:38. [PMID: 31203465 PMCID: PMC6571082 DOI: 10.1007/s11926-019-0837-6] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Articular chondrocytes are exclusively responsible for the turnover of the extracellular matrix (ECM) of hyaline cartilage. However, chondrocytes are phenotypically unstable and, if they de-differentiate into hypertrophic or fibroblastic forms, will produce a defective and weak matrix. Chondrocyte volume and morphology exert a strong influence over phenotype and a full appreciation of the factors controlling chondrocyte phenotype stability is central to understanding (a) the mechanisms underlying the cartilage failure in osteoarthritis (OA), (b) the rationale for hyaline cartilage repair, and (c) the strategies for improving the engineering of resilient cartilage. The focus of this review is on the factors involved in, and the importance of regulating, chondrocyte morphology and volume as key controllers of chondrocyte phenotype. RECENT FINDINGS The visualisation of fluorescently-labelled in situ chondrocytes within non-degenerate and mildly degenerate cartilage, by confocal scanning laser microscopy (CLSM) and imaging software, has identified the marked heterogeneity of chondrocyte volume and morphology. The presence of chondrocytes with cytoplasmic processes, increased volume, and clustering suggests important early changes to their phenotype. Results from experiments more closely aligned to the normal physico-chemical environment of in situ chondrocytes are emphasising the importance of understanding the factors controlling chondrocyte morphology and volume that ultimately affect phenotype. An appreciation of the importance of chondrocyte volume and morphology for controlling the chondrocyte phenotype is advancing at a rapid pace and holds particular promise for developing strategies for protecting the chondrocytes against deleterious changes and thereby maintaining healthy and resilient cartilage.
Collapse
Affiliation(s)
- Andrew C Hall
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, Scotland, EH8 9XD, UK.
| |
Collapse
|
9
|
Cruz M, Zanatta M, da Veiga M, Ciancaglini P, Ramos A. Lipid-mediated growth of SrCO3/CaCO3 hybrid films as bioactive coatings for Ti surfaces. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:762-769. [DOI: 10.1016/j.msec.2019.02.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 02/01/2019] [Accepted: 02/06/2019] [Indexed: 01/10/2023]
|
10
|
Wang L, Boussetta N, Lebovka N, Lefebvre C, Vorobiev E. Correlations between disintegration degree of fruit skin cells induced by ultrasound and efficiency of bio-compounds extraction. ULTRASONICS SONOCHEMISTRY 2019; 52:280-285. [PMID: 30555040 DOI: 10.1016/j.ultsonch.2018.11.026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/18/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
The ultrasound (US) assisted extraction of bio-compounds from different fruit skins (apples, bananas and persimmons) was studied. The aqueous suspensions of skins were treated by US with different energy inputs (0.033-0.299 kW·h/kg) and total time of aqueous extraction was up to 2700 s. The ionic, Zi, and total polyphenol, Zp, extraction indexes of the liquid extracts were analyzed. From microscopic images the cell wall disintegration index, Zm, was determined. Increase in US energy input caused the increase of values of Zi, Zp and Zm. The correlations between extraction parameters and the disintegration index, Zm, were discussed.
Collapse
Affiliation(s)
- Lu Wang
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France
| | - Nadia Boussetta
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France.
| | - Nikolai Lebovka
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France; Institute of Biocolloidal Chemistry named after F. D. Ovcharenko, NAS of Ukraine, 42, blvr. Vernadskogo, Kyiv 03142, Ukraine
| | - Caroline Lefebvre
- Sorbonne Universités, Université de Technologie de Compiègne, Service d'Analyse Physico-Chimique, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France
| | - Eugène Vorobiev
- Sorbonne Universités, Université de Technologie de Compiègne, Laboratoire de Transformations Intégrées de la Matière Renouvelable, EA 4297, Centre de Recherches de Royallieu, BP 20529, 60205 Compiègne Cedex, France
| |
Collapse
|
11
|
Belykh E, Patel AA, Miller EJ, Bozkurt B, Yağmurlu K, Woolf EC, Scheck AC, Eschbacher JM, Nakaji P, Preul MC. Probe-based three-dimensional confocal laser endomicroscopy of brain tumors: technical note. Cancer Manag Res 2018; 10:3109-3123. [PMID: 30214304 PMCID: PMC6124793 DOI: 10.2147/cmar.s165980] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Confocal laser endomicroscopy (CLE) is used during fluorescence-guided brain tumor surgery for intraoperative microscopy of tumor tissue with cellular resolution. CLE could augment and expedite intraoperative decision-making and potentially aid in diagnosis and removal of tumor tissue. Objective To describe an extension of CLE imaging modality that produces Z-stack images and three-dimensional (3D) pseudocolored volumetric images. Materials and methods Hand-held probe-based CLE was used to collect images from GL261-luc2 gliomas in C57BL/6 mice and from human brain tumor biopsies. The mice were injected with fluorescein sodium (FNa) before imaging. Patients received FNa intraoperatively, and biopsies were imaged immediately in the operating room. Some specimens were counterstained with acridine orange, acriflavine, or Hoechst and imaged on a benchtop confocal microscope. CLE images at various depths were acquired automatically, compiled, rendered into 3D volumes using Fiji software and reviewed by a neuropathologist and neurosurgeons. Results CLE imaging, Z-stack acquisition, and 3D image rendering were performed using 19 mouse gliomas and 31 human tumors, including meningiomas, gliomas, and pituitary adenomas. Volumetric images and Z-stacks provided additional information about fluorescence signal distribution, cytoarchitecture, and the course of abnormal vasculature. Conclusion 3D and Z-stack CLE imaging is a unique new option for live intraoperative endomicroscopy of brain tumors. The 3D images afford an increased spatial understanding of tumor cellular architecture and visualization of related structures compared with two-dimensional images. Future application of specific fluorescent probes could benefit from this rapid in vivo imaging technology for interrogation of brain tumor tissue.
Collapse
Affiliation(s)
- Evgenii Belykh
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Arpan A Patel
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric J Miller
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Baran Bozkurt
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Kaan Yağmurlu
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Eric C Woolf
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Adrienne C Scheck
- Neuro-Oncology Research, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Jennifer M Eschbacher
- Department of Neuropathology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Peter Nakaji
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| | - Mark C Preul
- Department of Neurosurgery, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA,
| |
Collapse
|
12
|
Ciani A, Toumi H, Pallu S, Tsai EHR, Diaz A, Guizar-Sicairos M, Holler M, Lespessailles E, Kewish CM. Ptychographic X-ray CT characterization of the osteocyte lacuno-canalicular network in a male rat's glucocorticoid induced osteoporosis model. Bone Rep 2018; 9:122-131. [PMID: 30246062 PMCID: PMC6146379 DOI: 10.1016/j.bonr.2018.07.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 01/15/2023] Open
Abstract
Ptychographic X-ray computed tomography (PXCT) is a quantitative imaging modality that non-destructively maps the 3D electron density inside an object with tens of nanometers spatial resolution. This method provides unique access to the morphology and structure of the osteocyte lacuno-canalicular network (LCN) and nanoscale density of the tissue in the vicinity of an osteocyte lacuna. Herein, we applied PXCT to characterize the lacunae and LCN in a male Wistar rat model of glucocorticoid-induced osteoporosis (GIO). The ptychographic images revealed significant (p < 0.05) differences in the number of canaliculi originating from the lacuna per ellipsoidal surface unit, Ca.Nb (p = 0.0106), and the 3D morphology of the lacuna (p = 0.0064), between GIO and SHAM groups. Moreover, the mean canalicular diameter, Ca.Dm, was slightly statistically un-significantly smaller in GIO (152 ± 6.5) nm than in SHAM group (165 ± 8) nm (p = 0.053). Our findings indicate that PXCT can non-destructively provide detailed, nanoscale information on the 3D organization of the LCN in correlative studies of pathologies, such as osteoporosis, leading to improved diagnosis and therapy.
Collapse
Affiliation(s)
- Antonia Ciani
- Synchrotron Soleil, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France.,EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France
| | - Hechmi Toumi
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France.,Département Rhumatologie, Centre Hospitalier Régional d'Orléans, 45067 Orléans, France
| | - Stéphane Pallu
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France
| | | | - Ana Diaz
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | | | - Mirko Holler
- Paul Scherrer Institut, 5232 Villigen, Switzerland
| | - Eric Lespessailles
- EA4708, Imagerie Multimodale, Multiéchelles et Modélisation du Tissu Osseux et Articulaire (I3MTO), Université d'Orléans, 45000 Orléans, France.,Département Rhumatologie, Centre Hospitalier Régional d'Orléans, 45067 Orléans, France
| | - Cameron M Kewish
- Synchrotron Soleil, L'Orme des Merisiers, 91192 Gif-sur-Yvette, France
| |
Collapse
|
13
|
Moo EK, Sibole SC, Han SK, Herzog W. Three-dimensional micro-scale strain mapping in living biological soft tissues. Acta Biomater 2018; 70:260-269. [PMID: 29425715 DOI: 10.1016/j.actbio.2018.01.048] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 01/16/2018] [Accepted: 01/30/2018] [Indexed: 10/18/2022]
Abstract
Non-invasive characterization of the mechanical micro-environment surrounding cells in biological tissues at multiple length scales is important for the understanding of the role of mechanics in regulating the biosynthesis and phenotype of cells. However, there is a lack of imaging methods that allow for characterization of the cell micro-environment in three-dimensional (3D) space. The aims of this study were (i) to develop a multi-photon laser microscopy protocol capable of imprinting 3D grid lines onto living tissue at a high spatial resolution, and (ii) to develop image processing software capable of analyzing the resulting microscopic images and performing high resolution 3D strain analyses. Using articular cartilage as the biological tissue of interest, we present a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning length scales from the tissue to the cell level. Using custom image processing software, we provide accurate and robust 3D micro-strain analysis that allows for detailed qualitative and quantitative assessment of the 3D tissue kinematics. This novel technique preserves tissue structural integrity post-scanning, therefore allowing for multiple strain measurements at different time points in the same specimen. The proposed technique is versatile and opens doors for experimental and theoretical investigations on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues. STATEMENT OF SIGNIFICANCE We presented a novel two-photon excitation imaging technique for measuring the internal 3D kinematics in intact cartilage at sub-micrometer resolution, spanning from tissue length scale to cellular length scale. Using a custom image processing software (lsmgridtrack), we provide accurate and robust micro-strain analysis that allowed for detailed qualitative and quantitative assessment of the 3D tissue kinematics. The approach presented here can also be applied to other biological tissues such as meniscus and annulus fibrosus, as well as tissue-engineered tissues for the characterization of their mechanical properties. This imaging technique opens doors for experimental and theoretical investigation on the relationship between tissue deformation and cell biosynthesis. Studies of this nature may enhance our understanding of the mechanisms underlying cell mechano-transduction, and thus, adaptation and degeneration of soft connective tissues.
Collapse
|
14
|
de Faria AN, Cruz MAE, Ruiz GCM, Zancanela DC, Ciancaglini P, Ramos AP. Different compact hybrid Langmuir-Blodgett-film coatings modify biomineralization and the ability of osteoblasts to grow. J Biomed Mater Res B Appl Biomater 2018; 106:2524-2534. [PMID: 29314671 DOI: 10.1002/jbm.b.34069] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 11/28/2017] [Accepted: 12/10/2017] [Indexed: 01/03/2023]
Abstract
Calcium phosphates (CaPs) are biomaterials widely used in tissue regeneration with outstanding biological performance. Although the tremendous improvements achieved in CaP's materials research over the years, their interaction with physiological environments still need to be fully understood. The aim of this study is to explore a biomimetic Langmuir-Blodgett (LB) membrane to template the growth of hydroxyapatite (HAp) coatings on Ti surfaces and the ability of these coatings in inducing biomineralization by osteoblasts cultured in vitro. Changing the phospholipids (i.e., dihexadecyl phosphate (DHP) or octadecylphosphonic acid (OPA)), we also tuned the surface Ca2+ concentration. This structural feature gave rise to different LB-hybrid surfaces where the concentration of Ca2+ in the OPA/HAp was higher than the concentration of Ca2+ in DHP/HAp coating. The higher Ca2+ amount on OPA/HAp coatings, allied to the physical-chemical features, lead to different responses on osteoblasts, stimulating or inhibiting the natural biomineralization. The OPA/HAp coating caused a delay in the osteoblast proliferation as indicated by the decrease in the cell viability at the 7th culture day. Improved cell differentiation triggered by the DHP/HAp coating resulted in higher osteoblast biomineralization. The present data underscore that besides both coatings being composed by HAp, the final interfacial composition and physical-chemical properties influence differently the osteoblast behavior. Although the best osteoblast's viability was found to OPA/HAp, our dataset attested that DHP/HAp induced mineralization more effectively than that. This unexpected finding highlight the importance of deeply understanding the biomaterial interface and suggest a promising approach to the design of biofunctional LB-based coatings with tunable properties. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 2524-2534, 2018.
Collapse
Affiliation(s)
- Amanda N de Faria
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil.,Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, 3900, Brasil
| | - Marcos A E Cruz
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Gília C M Ruiz
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Daniela C Zancanela
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Pietro Ciancaglini
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| | - Ana P Ramos
- Departamento de Química, , Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo 3900, Brasil
| |
Collapse
|
15
|
Georgiadis M, Müller R, Schneider P. Techniques to assess bone ultrastructure organization: orientation and arrangement of mineralized collagen fibrils. J R Soc Interface 2017; 13:rsif.2016.0088. [PMID: 27335222 DOI: 10.1098/rsif.2016.0088] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/18/2016] [Indexed: 12/13/2022] Open
Abstract
Bone's remarkable mechanical properties are a result of its hierarchical structure. The mineralized collagen fibrils, made up of collagen fibrils and crystal platelets, are bone's building blocks at an ultrastructural level. The organization of bone's ultrastructure with respect to the orientation and arrangement of mineralized collagen fibrils has been the matter of numerous studies based on a variety of imaging techniques in the past decades. These techniques either exploit physical principles, such as polarization, diffraction or scattering to examine bone ultrastructure orientation and arrangement, or directly image the fibrils at the sub-micrometre scale. They make use of diverse probes such as visible light, X-rays and electrons at different scales, from centimetres down to nanometres. They allow imaging of bone sections or surfaces in two dimensions or investigating bone tissue truly in three dimensions, in vivo or ex vivo, and sometimes in combination with in situ mechanical experiments. The purpose of this review is to summarize and discuss this broad range of imaging techniques and the different modalities of their use, in order to discuss their advantages and limitations for the assessment of bone ultrastructure organization with respect to the orientation and arrangement of mineralized collagen fibrils.
Collapse
Affiliation(s)
| | - Ralph Müller
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
| | - Philipp Schneider
- Institute for Biomechanics, ETH Zurich, Zurich, Switzerland Bioengineering Science Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, UK
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW The bone is able to adapt its structure to mechanical signals via the bone remodeling process governed by mechanosensitive osteocytes. With aging, an imbalance in bone remodeling results in osteoporosis. In this review, we hypothesized that changes in lacunar morphology underlie the decreased bone mechanoresponsiveness to mechanical loading with aging. RECENT FINDINGS Several studies have reported considerable variations in the shape of osteocytes and their lacunae with aging. Since osteocytes can sense matrix strain directly via their cell bodies, the variations in osteocyte morphology may cause changes in osteocyte mechanosensitivity. As a consequence, the load-adaptive response of osteocytes may change with aging, even when mechanical loading would remain unchanged. Though extensive quantitative data is lacking, evidence exists that the osteocyte lacunae are becoming smaller and more spherical with aging. Future dedicated studies might reveal whether these changes would affect osteocyte mechanosensation and the subsequent biological response, and whether this is (one of) the pathways involved in age-related bone loss.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300c, 3001 Leuven, Belgium
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - G. Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Celestijnenlaan 300c, 3001 Leuven, Belgium
| |
Collapse
|
17
|
Hemmatian H, Laurent MR, Ghazanfari S, Vanderschueren D, Bakker AD, Klein-Nulend J, van Lenthe GH. Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography. PLoS One 2017; 12:e0182996. [PMID: 28797125 PMCID: PMC5552254 DOI: 10.1371/journal.pone.0182996] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 07/27/2017] [Indexed: 02/07/2023] Open
Abstract
Bone's microporosity plays important roles in bone biology and bone mechanical quality. In this study, we explored the accuracy and reproducibility of nondestructive desktop μCT for 3D visualization and subsequent morphometric analysis of mouse cortical bone microporosity including the vascular canal network and osteocyte lacunae. The accuracy of measurements was evaluated in five murine fibula using confocal laser scanning microscopy (CLSM) in conjunction with Fluorescein isothiocyanate (FITC) staining as the reference method. The reproducibility of μCT-derived cortical bone microstructural indices was examined in 10 fibulae of C57Bl/6J male mice at a nominal resolution of 700 nanometer. Three repeated measurements were made on different days. An excellent correlation between μCT and CLSM was observed for both mean lacuna volume (r = 0.98, p = 0.002) and for mean lacuna orientation (r = 0.93, p = 0.02). Whereas the two techniques showed no significant differences for these parameters, the mean lacuna sphericity acquired from μCT was significantly higher than CLSM (p = 0.01). Reproducibility was high, with precision errors (PE) of 1.57-4.69% for lacuna parameters, and of 1.01-9.45% for vascular canal parameters. Intraclass correlation coefficient (ICC) showed a high reliability of the measurements, ranging from 0.998-1.000 for cortical parameters, 0.973-0.999 for vascular canal parameters and 0.755-0.991 for lacuna parameters. In conclusion, desktop μCT is a valuable tool to quantify the 3D characteristics of bone vascular canals as well as lacunae which can be applied to intact murine bones with high accuracy and reproducibility. Thus, μCT might be an important tool to improve our understanding of the physiological and biomechanical significance of these cannular and lacunar structure in cortical bone.
Collapse
Affiliation(s)
- Haniyeh Hemmatian
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Michaël R. Laurent
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Gerontology and Geriatrics, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Samaneh Ghazanfari
- Aachen-Maastricht Institute for Biobased Materials, Department of Humanities and Sciences, Maastricht University, Geleen, The Netherlands
| | - Dirk Vanderschueren
- Clinical and Experimental Endocrinology, Department of Clinical and Experimental Medicine, KU Leuven, Leuven, Belgium
| | - Astrid D. Bakker
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - G. Harry van Lenthe
- Biomechanics Section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Karim A, Hall AC. Chondrocyte Morphology in Stiff and Soft Agarose Gels and the Influence of Fetal Calf Serum. J Cell Physiol 2016; 232:1041-1052. [DOI: 10.1002/jcp.25507] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 07/27/2016] [Indexed: 01/31/2023]
Affiliation(s)
- Asima Karim
- Centre for Integrative Physiology; Deanery of Biomedical Sciences; University of Edinburgh; Edinburgh, Scotland United Kingdom
| | - Andrew C. Hall
- Centre for Integrative Physiology; Deanery of Biomedical Sciences; University of Edinburgh; Edinburgh, Scotland United Kingdom
| |
Collapse
|
19
|
Tovani CB, Zancanela DC, Faria AN, Ciancaglini P, Ramos AP. Bio-inspired synthesis of hybrid tube-like structures based on CaCO3 and type I-collagen. RSC Adv 2016. [DOI: 10.1039/c6ra18984a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tube-like hybrid particles based on calcium carbonate, a biocompatible mineral, and collagen, enhance osteoblasts viability.
Collapse
Affiliation(s)
- C. B. Tovani
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - D. C. Zancanela
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - A. N. Faria
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - P. Ciancaglini
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| | - A. P. Ramos
- Departamento de Química
- Faculdade de Filosofia
- Ciências e Letras de Ribeirão Preto
- Universidade de São Paulo
- Ribeirão Preto 14040-901
| |
Collapse
|
20
|
Abstract
Prosthetic joint infection (PJI) still remains a significant problem. In line with the forecasted rise in joint replacement procedures, the number of cases of PJI is also anticipated to rise. The formation of biofilm by causative pathogens is central to the occurrence and the recalcitrance of PJI. The subject of microbial biofilms is receiving increasing attention, probably as a result of the wide acknowledgement of the ubiquity of biofilms in the natural, industrial, and clinical contexts, as well as the notorious difficulty in eradicating them. In this review, we discuss the pertinent issues surrounding PJI and the challenges posed by biofilms regarding diagnosis and treatment. In addition, we discuss novel strategies of prevention and treatment of biofilm-related PJI.
Collapse
Affiliation(s)
| | | | - Jason C Webb
- Avon Orthopedic Centre, Southmead Hospital,University of Bristol
| |
Collapse
|
21
|
Paterson SI, Amin AK, Hall AC. Airflow accelerates bovine and human articular cartilage drying and chondrocyte death. Osteoarthritis Cartilage 2015; 23:257-65. [PMID: 25463263 DOI: 10.1016/j.joca.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 10/08/2014] [Accepted: 10/13/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Exposure of articular cartilage to static air results in changes to the extracellular matrix (ECM) and stimulates chondrocyte death, which may cause joint degeneration. However during open orthopaedic surgery, cartilage is often exposed to laminar airflow, which may exacerbate these damaging effects. We compared drying in static and moving air in terms of cartilage appearance, hydration and chondrocyte viability, and tested the ability of saline-saturated gauze to limit the detrimental effects of air exposure. DESIGN Articular cartilage from bovine metatarsophalangeal joints (N = 50) and human femoral heads (N = 6) was exposed for 90 min to (1) static air (2) airflow (up to 0.34 m/s), or (3) airflow (0.18 m/s), covered with gauze. Following air exposure, cartilage was also rehydrated (0.9% saline; 120 min) to determine the reversibility of drying effects. The influence of airflow was assessed by studying macroscopic appearance, and quantifying superficial zone (SZ) chondrocyte viability and cartilage hydration. RESULTS Airflow caused advanced changes to cartilage appearance, accelerated chondrocyte death, and increased dehydration compared to static air. These effects were prevented if cartilage was covered by saline-saturated gauze. Cartilage rehydration reversed macroscopic changes associated with drying but the chondrocyte death was not altered. Chondrocytes at the cut edge of cartilage were more sensitive to drying compared to cells distant from the edge. CONCLUSIONS Airflow significantly increased articular cartilage dehydration and chondrocyte death compared to static air. As laminar airflow is routinely utilised in operating theatres, it is essential that articular cartilage is kept wet via irrigation or by covering with saline-saturated gauze to prevent chondrocyte death.
Collapse
Affiliation(s)
- S I Paterson
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - A K Amin
- Department of Trauma and Orthopaedic Surgery, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - A C Hall
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
22
|
Abstract
Micro-computed tomography (micro-CT)-a version of X-ray CT operating at high spatial resolution-has had a considerable success for the investigation of trabecular bone micro-architecture. Currently, there is a lot of interest in exploiting CT techniques at even higher spatial resolutions to assess bone tissue at the cellular scale. After recalling the basic principles of micro-CT, we review the different existing system, based on either standard X-ray tubes or synchrotron sources. Then, we present recent applications of micro- and nano-CT for the analysis of osteocyte lacunae and the lacunar-canalicular network. We also address the question of the quantification of bone ultrastructure to go beyond the sole visualization.
Collapse
|
23
|
PARRILLI A, PAGANI S, MALTARELLO MC, SANTI S, SALERNO A, NETTI PA, GIARDINO R, RIMONDINI L, FINI M. Three-dimensional cellular distribution in polymeric scaffolds for bone regeneration: a microCT analysis compared to SEM, CLSM and DNA content. J Microsc 2014; 255:20-9. [DOI: 10.1111/jmi.12132] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/03/2014] [Indexed: 11/25/2022]
Affiliation(s)
- A. PARRILLI
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
| | - S. PAGANI
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopaedic Institute; Bologna Italy
| | - M. C. MALTARELLO
- Laboratory of Muscoskeletal Cell Biology; Rizzoli Orthopaedic Institute; Bologna Italy
- RAMSES Laboratory; Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
| | - S. SANTI
- Laboratory of Muscoskeletal Cell Biology; Rizzoli Orthopaedic Institute; Bologna Italy
- CNR, Institute of Molecular Genetics; Bologna Italy
| | - A. SALERNO
- Interdisciplinary Research Centre of Biomaterials; University of Naples Federico II; Naples Italy
- Institute for Composite and Biomedical Materials; National Research Council; (IMCB-CNR); Naples Italy
| | - P. A. NETTI
- Interdisciplinary Research Centre of Biomaterials; University of Naples Federico II; Naples Italy
- Centre for Advanced Biomaterials for Health Care (CRIB-IIT); Istituto Italiano di Tecnologia; Naples Italy
| | - R. GIARDINO
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
| | - L. RIMONDINI
- Department of Health Sciences; University of Piemonte Orientale “Amedeo Avogadro”; Novara Italy
| | - M. FINI
- Biocompatibility, Technological Innovations and Advanced Therapies Laboratory (BITTA); Rizzoli RIT Department; Rizzoli Orthopaedic Institute; Bologna Italy
- Laboratory of Preclinical and Surgical Studies; Rizzoli Orthopaedic Institute; Bologna Italy
| |
Collapse
|
24
|
Dong P, Haupert S, Hesse B, Langer M, Gouttenoire PJ, Bousson V, Peyrin F. 3D osteocyte lacunar morphometric properties and distributions in human femoral cortical bone using synchrotron radiation micro-CT images. Bone 2014; 60:172-85. [PMID: 24334189 DOI: 10.1016/j.bone.2013.12.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 11/26/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022]
Abstract
Osteocytes, the most numerous bone cells, are thought to be actively involved in the bone modeling and remodeling processes. The morphology of osteocyte is hypothesized to adapt according to the physiological mechanical loading. Three-dimensional micro-CT has recently been used to study osteocyte lacunae. In this work, we proposed a computationally efficient and validated automated image analysis method to quantify the 3D shape descriptors of osteocyte lacunae and their distribution in human femurs. Thirteen samples were imaged using Synchrotron Radiation (SR) micro-CT at ID19 of the ESRF with 1.4μm isotropic voxel resolution. With a field of view of about 2.9×2.9×1.4mm(3), the 3D images include several tens of thousands of osteocyte lacunae. We designed an automated quantification method to segment and extract 3D cell descriptors from osteocyte lacunae. An image moment-based approach was used to calculate the volume, length, width, height and anisotropy of each osteocyte lacuna. We employed a fast algorithm to further efficiently calculate the surface area, the Euler number and the structure model index (SMI) of each lacuna. We also introduced the 3D lacunar density map to directly visualize the lacunar density variation over a large field of view. We reported the lacunar morphometric properties and distributions as well as cortical bone histomorphometric indices on the 13 bone samples. The mean volume and surface were found to be 409.5±149.7μm(3) and 336.2±94.5μm(2). The average dimensions were of 18.9±4.9μm in length, 9.2±2.1μm in width and 4.8±1.1μm in depth. We found lacunar number density and six osteocyte lacunar descriptors, three axis lengths, two anisotropy ratios and SMI, that are significantly correlated to bone porosity at a same local region. The proposed method allowed an automatic and efficient direct 3D analysis of a large population of bone cells and is expected to provide reliable biological information for better understanding the bone quality and diseases at cellular level.
Collapse
Affiliation(s)
- Pei Dong
- CREATIS, CNRS UMR 5220; Inserm U1044; Université de Lyon; Université Lyon 1; INSA-Lyon, 69621 Villeurbanne, France; European Synchrotron Radiation Facility, X-Ray Imaging Group, 38043 Grenoble, France.
| | - Sylvain Haupert
- UMPC Univ Paris 6, UMR 7623, Laboratoire d'Imagerie Paramétrique, 75006 Paris, France.
| | - Bernhard Hesse
- CREATIS, CNRS UMR 5220; Inserm U1044; Université de Lyon; Université Lyon 1; INSA-Lyon, 69621 Villeurbanne, France; European Synchrotron Radiation Facility, X-Ray Imaging Group, 38043 Grenoble, France; Berlin-Brandenburg School for Regenerative Therapies, Charité-Universitätsmedizin Berlin, Berlin, Germany.
| | - Max Langer
- CREATIS, CNRS UMR 5220; Inserm U1044; Université de Lyon; Université Lyon 1; INSA-Lyon, 69621 Villeurbanne, France; European Synchrotron Radiation Facility, X-Ray Imaging Group, 38043 Grenoble, France.
| | - Pierre-Jean Gouttenoire
- CREATIS, CNRS UMR 5220; Inserm U1044; Université de Lyon; Université Lyon 1; INSA-Lyon, 69621 Villeurbanne, France; European Synchrotron Radiation Facility, X-Ray Imaging Group, 38043 Grenoble, France.
| | - Valérie Bousson
- Univ Paris Diderot, Sorbonne Paris Cité, B2OA, UMR 7052 CNRS, 75010 Paris, France.
| | - Françoise Peyrin
- CREATIS, CNRS UMR 5220; Inserm U1044; Université de Lyon; Université Lyon 1; INSA-Lyon, 69621 Villeurbanne, France; European Synchrotron Radiation Facility, X-Ray Imaging Group, 38043 Grenoble, France.
| |
Collapse
|
25
|
Rotated Hough Filtering for Automatically Distinguishing the Collagen Bundles in the Most Superficial Layer of Articular Cartilage. IEEE J Biomed Health Inform 2013; 17:922-7. [DOI: 10.1109/jbhi.2013.2259246] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Dual photon excitation microscopy and image threshold segmentation in live cell imaging during compression testing. J Biomech 2013; 46:2024-31. [DOI: 10.1016/j.jbiomech.2013.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 05/21/2013] [Accepted: 06/06/2013] [Indexed: 11/21/2022]
|
27
|
Strydom H, Maltha JC, Kuijpers-Jagtman AM, Von den Hoff JW. The oxytalan fibre network in the periodontium and its possible mechanical function. Arch Oral Biol 2012; 57:1003-11. [PMID: 22784380 DOI: 10.1016/j.archoralbio.2012.06.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/29/2012] [Accepted: 06/13/2012] [Indexed: 01/20/2023]
Abstract
The biomechanical character of the periodontal ligament (PDL) is crucial in its response to functional and orthodontic forces. Collagen has been the primary subject of investigations in this field. Several studies, however, indicate that oxytalan fibres, which belong to the elastic fibre family, also contribute to the biomechanical character and behaviour of the PDL. In order to elucidate this, we have evaluated the available literature on the oxytalan fibre network within the PDL and supra-alveolar tissues with respect to development, morphology and distribution, and response to mechanical stimulation. To this end, we have combined the classical histological studies with more recent in vitro studies. Oxytalan fibres develop simultaneously with the root and the vascular system within the PDL. A close association between oxytalan fibres and the vascular system also remains later in life, suggesting a role in vascular support. Mechanical loading of the PDL, through orthodontic force application, appears to induce an increase in the number, size, and length of oxytalan fibres. In line with this, in vitro stretching of PDL fibroblasts (PDLFs) results in an increased production of fibrillin, a major structural component of the microfibrils that make up oxytalan fibres. The available data suggest a mechanical function for oxytalan, but to date experimental data are limited. Further research is required to clarify their exact mechanical function and possible role in orthodontic tooth movement.
Collapse
Affiliation(s)
- Hardus Strydom
- Department of Orthodontics and Craniofacial Biology, Radboud University Nijmegen Medical Centre, The Netherlands
| | | | | | | |
Collapse
|
28
|
Cao X, Geng J, Su S, Zhang L, Xu Q, Zhang L, Xie Y, Wu S, Sun Y, Gao Z. Doxorubicin-Loaded Zein in Situ Gel for Interstitial Chemotherapy. Chem Pharm Bull (Tokyo) 2012; 60:1227-33. [DOI: 10.1248/cpb.c12-00270] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoying Cao
- Department of Pharmacy, Hebei University of Science and Technology
| | - Jianning Geng
- Department of Pharmacy, Hebei University of Science and Technology
| | - Suwen Su
- Department of Pharmacology, Hebei Medical University
| | - Linan Zhang
- Department of Pharmacy, Hebei University of Science and Technology
| | - Qian Xu
- Department of CT, The Forth Hospital of Hebei Medical University
| | - Li Zhang
- Department of Pharmaceutics, New Drug Research and Development Center, North China Pharmaceutical Group Corporation
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology
| | - Shaomei Wu
- Department of Pharmacy, Hebei University of Science and Technology
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology
| |
Collapse
|
29
|
Stoppato M, Carletti E, Maniglio D, Migliaresi C, Motta A. Functional role of scaffold geometries as a template for physiological ECM formation: evaluation of collagen 3D assembly. J Tissue Eng Regen Med 2011; 7:161-8. [PMID: 22162265 DOI: 10.1002/term.516] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 07/21/2011] [Accepted: 09/22/2011] [Indexed: 11/12/2022]
Abstract
Bone tissue regeneration involves different healing stages and the resulting final hard tissue is formed from natural templates such as fibrous collagen, soft and hard callus and capillary bed. This work aims to evaluate the efficiency of different scaffold geometries with a novel approach: exploring the relationships among scaffold morphologies, cell activity and collagen 3D organization, which serves as a natural template for subsequent mineralization. Among the possible systems to fabricate scaffolds, solvent casting with particulate leaching and microfabrication were used to produce random vs ordered structures from poly(D,L-lactic acid). In vitro biological testing was carried out by culturing a human osteosarcoma-derived osteoblast cell line (MG63) and measuring material cytotoxicity, cell proliferation and migration. Assemblage of collagen fibres was evaluated. A preliminary study of collagen distribution over the two different matrices was performed by confocal laser microscopy after direct red 80 staining. Both of the scaffolds were seen to be a good substrate for cell attachment, growth and proliferation. However, it seems that random, rather than regular, well-ordered porosity induces a more proper collagen fibre distribution and organization, similar to the natural one formed in the early stages of bone repair.
Collapse
Affiliation(s)
- M Stoppato
- Department of Materials Engineering and Industrial Technologies and Biotech Research Centre, University of Trento, Italy
| | | | | | | | | |
Collapse
|
30
|
Tian Y, Peng Z, Gorton D, Xiao Y, Ketheesan N. Immunohistochemical analysis of structural changes in collagen for the assessment of osteoarthritis. Proc Inst Mech Eng H 2011; 225:680-7. [DOI: 10.1177/0954411911402135] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Collagen fibrillation within articular cartilage (AC) plays a key role in joint osteoarthritis (OA) progression and, therefore, studying collagen synthesis changes could be an indicator for use in the assessment of OA. Various staining techniques have been developed and used to determine the collagen network transformation under microscopy. However, because collagen and proteoglycan coexist and have the same index of refraction, conventional methods for specific visualization of collagen tissue is difficult. This study aimed to develop an advanced staining technique to distinguish collagen from proteoglycan and to determine its evolution in relation to OA progression using optical and laser scanning confocal microscopy (LSCM). A number of AC samples were obtained from sheep joints, including both healthy and abnormal joints with OA grades 1 to 3. The samples were stained using two different trichrome methods and immunohistochemistry (IHC) to stain both colourimetrically and with fluorescence. Using optical microscopy and LSCM, the present authors demonstrated that the IHC technique stains collagens only, allowing the collagen network to be separated and directly investigated. Fluorescently-stained IHC samples were also subjected to LSCM to obtain three-dimensional images of the collagen fibres. Changes in the collagen fibres were then correlated with the grade of OA in tissue. This study is the first to successfully utilize the IHC staining technique in conjunction with laser scanning confocal microscopy. This is a valuable tool for assessing changes to articular cartilage in OA.
Collapse
Affiliation(s)
- Y Tian
- School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland, Australia
| | - Z Peng
- School of Engineering and Physical Sciences, James Cook University, Townsville, Queensland, Australia
| | - D Gorton
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, Australia
| | - Y Xiao
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Queensland, Australia
| | - N Ketheesan
- School of Veterinary and Biomedical Sciences, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
31
|
Abstract
Imaging cytometry has recently become an important achievement in development of flow cytometric technologies. The ImageStream cytometer combines the vast features of classical flow cytometry including an impartial analysis of great number of cells in short period of time which results in strong statistical data output, with essential features of fluorescence microscopy such us collecting of real multiparameter images of analyzed objects. In this chapter, we would like to introduce an overview of imaging cytometry platform and emphasize the potential advantages of using this system for several experimental purposes. Moreover, both well established as well as potential applications of imaging cytometry will be described. Eventually, we would like to illustrate the unique use of ImageStream cytometer for identification and characterization of subpopulations of stem/ progenitor cells present in different biological specimens.
Collapse
Affiliation(s)
- Ewa K Zuba-Surma
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | | |
Collapse
|
32
|
Murray DH, Bush PG, Brenkel IJ, Hall AC. Abnormal human chondrocyte morphology is related to increased levels of cell-associated IL-1β and disruption to pericellular collagen type VI. J Orthop Res 2010; 28:1507-14. [PMID: 20872589 PMCID: PMC3149127 DOI: 10.1002/jor.21155] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Early osteoarthritis (OA) is poorly understood, but abnormal chondrocyte morphology might be important. We studied IL-1β and pericellular collagen type VI in morphologically normal and abnormal chondrocytes. In situ chondrocytes within explants from nondegenerate (grade 0/1) areas of human tibial plateaus (n = 21) were fluorescently labeled and visualized [2-photon laser scanning microscopy (2PLSM)]. Normal chondrocytes exhibited a "smooth" membrane surface, whereas abnormal cells were defined as demonstrating ≥1 cytoplasmic process. Abnormal chondrocytes were further classified by number and average length of cytoplasmic processes/cell. IL-1β or collagen type VI associated with single chondrocytes were visualized by fluorescence immuno-histochemistry and confocal laser scanning microscopy (CLSM). Fluorescence was quantified as the number of positive voxels (i.e., 3D pixels with fluorescence above baseline)/cell. IL-1β-associated fluorescence increased between normal and all abnormal cells in the superficial (99.7 ± 29.8 [11 (72)] vs. 784 ± 382 [15 (132)]; p = 0.04, positive voxels/cell) and deep zones (66.5 ± 29.4 [9 (64)] vs. 795 ± 224 [9 (56)]; p = 0.006). There was a correlation (r(2) = 0.988) between the number of processes/cell (0-5) and IL-1β, and an increase particularly with short processes (≤5 µm; p = 0.022). Collagen type VI coverage and thickness decreased (p < 0.001 and p = 0.005, respectively) with development of processes. Abnormal chondrocytes in macroscopically nondegenerate cartilage demonstrated a marked increase in IL-1β and loss of pericellular type VI collagen, changes that could lead to cartilage degeneration.
Collapse
Affiliation(s)
- Dianne H Murray
- Centre for Integrative Physiology, School of Biomedical Sciences, University of EdinburghHugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Peter G Bush
- Centre for Integrative Physiology, School of Biomedical Sciences, University of EdinburghHugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| | - Ivan J Brenkel
- Department of Orthopaedics and Trauma, Queen Margaret Hospital, Fife Acute Hospitals NHS TrustDunfermline, Fife KY12 0SU, Scotland, United Kingdom
| | - Andrew C Hall
- Centre for Integrative Physiology, School of Biomedical Sciences, University of EdinburghHugh Robson Building, George Square, Edinburgh EH8 9XD, Scotland, United Kingdom
| |
Collapse
|
33
|
Schneider P, Meier M, Wepf R, Müller R. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone 2010; 47:848-58. [PMID: 20691297 DOI: 10.1016/j.bone.2010.07.026] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/26/2010] [Accepted: 07/28/2010] [Indexed: 11/29/2022]
Abstract
Osteocytes are the most abundant cells in bone and the only cells embedded in the bone mineral matrix. They form an extended, three-dimensional (3D) network, whose processes interconnecting the cell bodies reside in thin canals, the canaliculi. Together with the osteocyte lacunae, the canaliculi form the lacuno-canalicular network (LCN). As the negative imprint of the cellular network within bone tissue, the LCN morphology is considered to play a central role for bone mechanosensation and mechanotransduction. However, the LCN has neither been visualized nor quantified in an adequate way up to now. On this account, this article summarizes the current state of knowledge of the LCN morphology and then reviews different imaging methods regarding the quantitative 3D assessment of bone tissue in general and of the LCN in particular. These imaging methods will provide new insights in the field of bone mechanosensation and mechanotransduction and thus, into processes of strain sensation and transduction, which are tightly associated with osteocyte viability and bone quality.
Collapse
|
34
|
Andrews JC, Almeida E, van der Meulen MCH, Alwood JS, Lee C, Liu Y, Chen J, Meirer F, Feser M, Gelb J, Rudati J, Tkachuk A, Yun W, Pianetta P. Nanoscale X-ray microscopic imaging of mammalian mineralized tissue. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2010; 16:327-36. [PMID: 20374681 PMCID: PMC2873966 DOI: 10.1017/s1431927610000231] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A novel hard transmission X-ray microscope (TXM) at the Stanford Synchrotron Radiation Lightsource operating from 5 to 15 keV X-ray energy with 14 to 30 microm2 field of view has been used for high-resolution (30-40 nm) imaging and density quantification of mineralized tissue. TXM is uniquely suited for imaging of internal cellular structures and networks in mammalian mineralized tissues using relatively thick (50 microm), untreated samples that preserve tissue micro- and nanostructure. To test this method we performed Zernike phase contrast and absorption contrast imaging of mouse cancellous bone prepared under different conditions of in vivo loading, fixation, and contrast agents. In addition, the three-dimensional structure was examined using tomography. Individual osteocytic lacunae were observed embedded within trabeculae in cancellous bone. Extensive canalicular networks were evident and included processes with diameters near the 30-40 nm instrument resolution that have not been reported previously. Trabecular density was quantified relative to rod-like crystalline apatite, and rod-like trabecular struts were found to have 51-54% of pure crystal density and plate-like areas had 44-53% of crystal density. The nanometer resolution of TXM enables future studies for visualization and quantification of ultrastructural changes in bone tissue resulting from osteoporosis, dental disease, and other pathologies.
Collapse
Affiliation(s)
- Joy C Andrews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pautke C, Vogt S, Kreutzer K, Haczek C, Wexel G, Kolk A, Imhoff AB, Zitzelsberger H, Milz S, Tischer T. Characterization of eight different tetracyclines: advances in fluorescence bone labeling. J Anat 2010; 217:76-82. [PMID: 20456523 DOI: 10.1111/j.1469-7580.2010.01237.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Polychrome sequential labeling with fluorochromes is a standard technique for the investigation of bone formation and regeneration processes in vivo. However, for human application, only tetracycline and its derivates are approved as fluorochromes. Therefore, the aim of this study was to determine the fluorescence characteristics of the different tetracycline derivates to assess the feasibility of sequential in vivo bone labeling using distinguishable fluorochromes. Eight different tetracycline derivates were injected subcutaneously into growing rats as a single dose or sequentially in different combinations. After preparation of resin-embedded undecalcified bone sections, the fluorescence properties of the tetracycline derivates in bone were analyzed using conventional fluorescence microscopy, spectral image analysis and confocal laser scanning microscopy. Each tetracycline derivate exhibited a characteristic fluorescence spectrum, but the differences between them were small. Chlortetracycline could be discriminated reliably from all other derivates and could therefore be combined with any other tetracycline derivate for reliably distinguishable double labeling. Tetracycline itself exhibited the brightest fluorescence of all the investigated derivates. Interestingly, in conventional microscopy the same tetracycline derivative can appear in different colours to the human eye, even if spectral analysis confirmed identical emission peaks. In conclusion, the data suggest that fluorescence double labeling of bone is feasible using appropriate tetracycline derivates in combination with spectral imaging modalities.
Collapse
Affiliation(s)
- Christoph Pautke
- Department of Oral and Maxillofacial Surgery, University of Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Levitz D, Hinds MT, Choudhury N, Tran NT, Hanson SR, Jacques SL. Quantitative characterization of developing collagen gels using optical coherence tomography. JOURNAL OF BIOMEDICAL OPTICS 2010; 15:026019. [PMID: 20459264 DOI: 10.1117/1.3377961] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nondestructive optical imaging methods such as optical coherence tomography (OCT) have been proposed for characterizing engineered tissues such as collagen gels. In our study, OCT was used to image collagen gels with different seeding densities of smooth muscle cells (SMCs), including acellular gels, over a five-day period during which the gels contracted and became turbid with increased optical scattering. The gels were characterized quantitatively by their optical properties, specified by analysis of OCT data using a theoretical model. At 6 h, seeded cell density and scattering coefficient (mu(s)) were correlated, with mu(s) equal to 10.8 cm(-1)(10(6) cells mL). Seeded cell density and the scattering anisotropy (g) were uncorrelated. Over five days, the reflectivity in SMC gels gradually doubled with little change in optical attenuation, which indicated a decrease in g that increased backscatter, but only a small drop in mu(s). At five days, a subpopulation of sites on the gel showed substantially higher reflectivity (approximately a tenfold increase from the first 24 h). In summary, the increased turbidity of SMC gels that develops over time is due to a change in the structure of collagen, which affects g, and not simply due to a change in number density of collagen fibers due to contraction.
Collapse
Affiliation(s)
- David Levitz
- Oregon Health & Science University, Department of Biomedical Engineering, 3303 SW Bond Avenue, Mailcode CH13B, Portland, Oregon 97239, USA
| | | | | | | | | | | |
Collapse
|
37
|
Szczodry M, Coyle CH, Kramer SJ, Smolinski P, Chu CR. Progressive chondrocyte death after impact injury indicates a need for chondroprotective therapy. Am J Sports Med 2009; 37:2318-22. [PMID: 19864505 PMCID: PMC3425608 DOI: 10.1177/0363546509348840] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Impact injury to articular cartilage can lead to posttraumatic osteoarthritis. HYPOTHESES This study tests the hypotheses that (1) chondrocyte injury occurs after impact at energies insufficient to fracture the cartilage surface, and that (2) cartilage injury patterns vary with impact energy, time after injury, and cartilage thickness. STUDY DESIGN Controlled laboratory study. METHODS Fresh bovine osteochondral cores were randomly divided into 5 groups: (1) control, (2) 0.35 J, (3) 0.71 J, (4) 1.07 J, and (5) 1.43 J impact energies. Cores were subjected to computer-controlled impact loading and full-thickness sections were then prepared and incubated in Dulbecco's Modified Eagle's Medium/F12 at 37 degrees C. Adjacent sections were harvested 1 and 4 days after impact for viability staining and fluorescent imaging. The area of dead and living chondrocytes was quantified using custom image analysis software and reported as a percentage of total cartilage area. RESULTS The highest impact energy fractured the cartilage in all cores (1.43 J, n = 17). Seventy-three percent and 64% of the osteochondral cores remained intact after lower energy impacts of 0.71 J and 1.07 J, respectively. At lower energy levels, fractured cores were thinner (P <.01) than those remaining intact. In cores remaining intact after impact injury, chondrocyte death increased with increasing impact energy (P <.05) and with greater time after impact (P <.05). A progressive increase in dead cells near the bone/cartilage interface and at the articular surface was observed. CONCLUSION These data showing progressive chondrocyte death after impact injury at energies insufficient to fracture the cartilage surface demonstrate a potential need for early chondroprotective therapy. CLINICAL RELEVANCE These data show that efforts to reduce chondrocyte morbidity after joint injury may be a useful strategy to delay or prevent the onset of posttraumatic osteoarthritis.
Collapse
Affiliation(s)
- Michal Szczodry
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Christian H. Coyle
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Scott J. Kramer
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Patrick Smolinski
- Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Constance R. Chu
- Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania,Address correspondence to Constance R. Chu, MD, Cartilage Restoration Center, Department of Orthopaedic Surgery, University of Pittsburgh, E1640 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 ()
| |
Collapse
|
38
|
Kino-Oka M, Maeda Y, Sato Y, Maruyama N, Takezawa Y, Khoshfetrat AB, Sugawara K, Taya M. Morphological evaluation of chondrogenic potency in passaged cell populations. J Biosci Bioeng 2009; 107:544-51. [PMID: 19393556 DOI: 10.1016/j.jbiosc.2008.12.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 12/25/2008] [Accepted: 12/30/2008] [Indexed: 10/20/2022]
Abstract
The present study describes the morphological assessment of chondrogenic potency during a cell expanding process through serial subculturing of rabbit chondrocytes at different levels of population doublings (PD) in a T-flask with a conventional polystyrene surface. The passaged populations were seeded on a high-density collagen surface (CL surface) and in a collagen gel (CL gel) scaffold to evaluate the planar and spatial morphologies of the chondrocytes, respectively, as well as the gene expressions of mRNA for collagen types I and II. The planar morphological estimation was based on roundness (R(c)) of chondrocyte cells at different PD values after 1 day incubation on the CL surface. The frequency of round-shaped cells with R(c)>0.9 (f(R)) decreased with increasing PD values, accompanied by an increase in collagen type I mRNA level. At PD=17.8, the frequency reached f(R)=0.12, which was less than one-sixth of that at PD=0. A similar trend was found with respect to the passaged chondrocytes embedded in the CL gels by estimating the spatial morphology in terms of sphericity (S(c)) determined 4 days after seeding. With an increase in PD value, the frequency in spherical-shaped cells with S(c)>0.9 (f(S)) decreased and the mRNA expression of collagen type I increased, giving f(S)=0.28 at PD=17.8 which was less than a quarter of that at PD=0. From these results, the cell morphologies on the CL surface and in the CL gel were proposed as indicators for understanding chondrogenic potentials concerning the phenotypes and differentiated states in the population during cell expansion, ultimately leading to quality control of tissue-engineered cartilage.
Collapse
Affiliation(s)
- Masahiro Kino-Oka
- Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
Quantitative imaging of musculoskeletal tissue, including radiography, computed tomography (CT), and magnetic resonance imaging (MRI), has become the essential methodology in clinical practice for diagnosis and monitoring of various musculoskeletal conditions. Furthermore, quantitative imaging technologies have become indispensable for research and development in diseases of the human skeleton. Standardized methods of image analysis have been developed through the years to quantify measurements on bone and cartilage with high precision and accuracy. Key areas of musculoskeletal disease where quantitative imaging is currently employed are osteoporosis and arthritis.
Collapse
Affiliation(s)
- Peter Augat
- Biomechanics Laboratory, Trauma Center Murnau, 82418 Murnau, Germany.
| | | |
Collapse
|
40
|
Kino-Oka M, Takezawa Y, Taya M. Quality control of cultured tissues requires tools for quantitative analyses of heterogeneous features developed in manufacturing process. Cell Tissue Bank 2008; 10:63-74. [DOI: 10.1007/s10561-008-9103-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2008] [Accepted: 06/23/2008] [Indexed: 10/21/2022]
|
41
|
“Decoding the Dots”: The ImageStream system (ISS) as a novel and powerful tool for flow cytometric analysis. Open Life Sci 2008. [DOI: 10.2478/s11535-007-0044-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractThe aim of this article is to provide a brief review of the ImageStream system (ISS). The ISS technology was developed as a novel method for multiparameter cell analysis and subsequently as a supportive tool for flow cytometry (FC). ISS integrates the features of FC and fluorescent microscopy collecting images of acquired cells for offline digital image analysis. The article presents an overview of the main characteristics of ISS and a comparison between ISS, FC and the laser scanning cytometer (LSC). We reviewed ISS applications focusing on those involved in cellular phenotyping and provide our own experience with using ISS as a supportive tool to classical FC and demonstrate the compatibility between FC and ISS photometric analysis as well as the advantages of using ISS to confirm FC results.
Collapse
|
42
|
Guehring T, Urban JP, Cui Z, Tirlapur UK. Noninvasive 3D vital imaging and characterization of notochordal cells of the intervertebral disc by femtosecond near-infrared two-photon laser scanning microscopy and spatial-volume rendering. Microsc Res Tech 2008; 71:298-304. [DOI: 10.1002/jemt.20557] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Characterization of spatial growth and distribution of chondrocyte cells embedded in collagen gels through a stereoscopic cell imaging system. Biotechnol Bioeng 2008; 99:1230-40. [DOI: 10.1002/bit.21667] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
44
|
Williams SK, Amiel D, Ball ST, Allen RT, Tontz WL, Emmerson BC, Badlani NM, Emery SC, Haghighi P, Bugbee WD. Analysis of cartilage tissue on a cellular level in fresh osteochondral allograft retrievals. Am J Sports Med 2007; 35:2022-32. [PMID: 17724095 DOI: 10.1177/0363546507305017] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Fresh human osteochondral allografting is a biological cartilage replacement technique used to treat articular and osteoarticular defects in the knee. A small number of grafts fail, and we analyzed every retrieved graft during a 4-year period in order to learn more about the potential causes of failure. HYPOTHESIS A large percentage of chondrocytes still remain viable many years after fresh osteochondral allografting. STUDY DESIGN Descriptive laboratory study. METHODS Retrieval specimens were obtained at the time of revision surgery and immediately analyzed. Chondrocyte viability and viable cell density were determined using a live/dead staining technique followed by confocal microscopy. Glycosaminoglycan content was a measure of the cartilage matrix. Radiolabeled sulfate uptake served as a biochemical marker of chondrocyte metabolic activity. Cartilage and subchondral bone were examined histologically. RESULTS Fourteen patients yielded a total of 26 retrieval specimens that had been originally implanted as individual fresh osteochondral allografts. Average graft survival was 42 months. Chondrocyte viability was 82% +/- 17%, and chondrocyte viable cell density was 15 590 +/- 5900 viable cells/mm(3). Retrieved tissue demonstrated radiolabeled sulfate uptake of 437 +/- 270 counts per minute and 3.5% +/- 0.8% hexosamine per dry weight. Histologically, all specimens showed some degree of cartilage fibrillation. There was evidence of bone allograft incorporation in most specimens, as well as pannus formation in 4 specimens, but no evidence of immune rejection. CONCLUSION A small percentage of fresh osteochondral allografts fail, but the precise cause is unknown. The main theories for failure investigated here include immunologic rejection, failure of bony incorporation, and chondrocyte death causing breakdown of the cartilage matrix. We show that chondrocytes remain viable many years after transplantation, allograft bone incorporates, and immune rejection does not seem to play a primary role in failure. CLINICAL RELEVANCE Fresh osteochondral allografting is becoming more common in the treatment of articular cartilage defects in the knee. Our findings support the paradigm of fresh osteochondral allografting, the transplantation of hyaline cartilage with biological incorporation of the underlying bone scaffold. The reasons for failure of a small percentage of grafts remain unclear.
Collapse
Affiliation(s)
- Seth K Williams
- Department of Orthopaedic Surgery, University of California, San Diego, 9500 Gilman Drive, Mail Code 0630, La Jolla, CA 92093-0630, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Jones CW, Smolinski D, Willers C, Yates PJ, Keogh A, Fick D, Kirk TB, Zheng MH. Laser scanning confocal arthroscopy of a fresh cadaveric knee joint. Osteoarthritis Cartilage 2007; 15:1388-96. [PMID: 17618133 DOI: 10.1016/j.joca.2007.05.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2006] [Accepted: 05/01/2007] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) inflicts an enormous burden upon sufferers and healthcare systems worldwide. Continuing efforts to elucidate the aetiology of OA have indicated the need for non-destructive methods of in vivo microstructural assessment of articular cartilage (AC). In this study, we describe the first use of a recently developed laser scanning confocal arthroscope (LSCA) to image the cartilage of a fresh frozen cadaveric knee from a patient with OA. DESIGN Using an adaptation of the International Cartilage Repair Society (ICRS) joint mapping protocol, the joint was divided into three discrete regions (femoral condyle, patella and tibial plateau) for grading according to the ICRS (Outerbridge) system. The LSCA was used to generate images from each area within the three regions. Following imaging, the joint was sectioned and histology was performed on the corresponding sites with histological grading (modified-Mankin). RESULTS Quantitative results of ICRS, LSCA and histological OA assessment were compared using intraclass correlation (ICC) and Pearson correlation analysis. The LSCA enabled visualisation of chondrocyte morphology and cell density, with classical OA changes such as chondrocyte clustering, surface fibrillation and fissure formation evident. Obvious qualitative similarities between LSCA images and histology were observed, with fair to moderate agreement (P<0.05) demonstrated between modalities. CONCLUSIONS In this study, we have shown the viability of the LSCA for non-destructive imaging of the microstructure of OA knee cartilage. LSCA technology is potentially a valuable research and clinical tool for the non-destructive assessment of AC microstructure in early to late OA.
Collapse
Affiliation(s)
- C W Jones
- School of Mechanical Engineering, University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Liu E, Treiser MD, Johnson PA, Patel P, Rege A, Kohn J, Moghe PV. Quantitative biorelevant profiling of material microstructure within 3D porous scaffolds via multiphoton fluorescence microscopy. J Biomed Mater Res B Appl Biomater 2007; 82:284-97. [PMID: 17238159 DOI: 10.1002/jbm.b.30732] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study presents a novel approach, based on fluorescence multiphoton microscopy (MPM), to image and quantitatively characterize the microstructure and cell-substrate interactions within microporous scaffold substrates fabricated from synthetic biodegradable polymers. Using fluorescently dyed scaffolds fabricated from poly(DTE carbonate)/poly(DTO carbonate) blends of varying porosity and complementary green fluorescent protein-engineered fibroblasts, we reconstructed the three-dimensional distribution of the microporous and macroporous regions in 3D scaffolds, as well as cellular morphological patterns. The porosity, pore size and distribution, strut size, pore interconnectivity, and orientation of both macroscale and microscale pores of 3D scaffolds were effectively quantified and validated using complementary imaging techniques. Compared to other scaffold characterizing techniques such as confocal imaging and scanning electron microscopy (SEM), MPM enables the acquisition of images from scaffold thicknesses greater than a hundred microns with high signal-to-noise ratio, reduced bulk photobleaching, and the elimination of the need for deconvolution. In our study, the morphology and cytoskeletal organization of cells within the scaffold interior could be tracked with high resolution within the limits of penetration of MPM. Thus, MPM affords a promising integrated platform for imaging cell-material interactions within the interior of polymeric biomaterials.
Collapse
Affiliation(s)
- Er Liu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
Schneider P, Stauber M, Voide R, Stampanoni M, Donahue LR, Müller R. Ultrastructural properties in cortical bone vary greatly in two inbred strains of mice as assessed by synchrotron light based micro- and nano-CT. J Bone Miner Res 2007; 22:1557-70. [PMID: 17605631 DOI: 10.1359/jbmr.070703] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
UNLABELLED Nondestructive SR-based microCT and nano-CT methods have been designed for 3D quantification and morphometric analysis of ultrastructural phenotypes within murine cortical bone, namely the canal network and the osteocyte lacunar system. Results in two different mouse strains, C57BL/6J-Ghrhr(lit)/J and C3.B6-Ghrhr(lit)/J, showed that the cannular and lacunar morphometry and their bone mechanics were fundamentally different. INTRODUCTION To describe the different aspects of bone quality, we followed a hierarchical approach and assessed bone tissue properties in different regimens of spatial resolution, beginning at the organ level and going down to cellular dimensions. For these purposes, we developed different synchrotron radiation (SR)-based CT methods to assess ultrastructural phenotypes of murine bone. MATERIALS AND METHODS The femoral mid-diaphyses of 12 C57BL/6J-Ghrhr(lit)/J (B6-lit/lit) and 12 homozygous mutants C3.B6-Ghrhr(lit)/J (C3.B6-lit/lit) were measured with global SR microCT and local SR nano-CT (nCT) at nominal resolutions ranging from 3.5 microm to 700 nm, respectively. For volumetric quantification, morphometric indices were determined for the cortical bone, the canal network, and the osteocyte lacunar system using negative imaging. Moreover, the biomechanics of B6-lit/lit and C3.B6-lit/lit mice was determined by three-point bending. RESULTS The femoral mid-diaphysis of C3.B6-lit/lit was larger compared with B6-lit/lit mice. On an ultrastructural level, the cannular indices for C3.B6-lit/lit were generally bigger in comparison with B6-lit/lit mice. Accordingly, we derived and showed a scaling rule, saying that overall cannular indices scaled with bone size, whereas indices describing basic elements of cannular and lacunar morphometry did not. Although in C3.B6-lit/lit, the mean canal volume was larger than in B6-lit/lit, canal number density was proportionally smaller in C3.B6-lit/lit, so that lacuna volume density was found to be constant and therefore independent of mouse strain and sex. The mechanical properties in C3.B6-lit/lit were generally improved compared with B6-lit/lit specimens. For C3.B6-lit/lit, we observed a sex specificity of the mechanical parameters, which could not be explained by bone morphometry on an organ level. However, there is evidence that for C3.B6-lit/lit, the larger cortical bone mass is counterbalanced or even outweighed by the larger canal network in the female mice. CONCLUSIONS We established a strategy to subdivide murine intracortical porosity into ultrastructural phenotypes, namely the canal network and the osteocyte lacunar system. Nondestructive global and local SR-based CT methods have been designed for 3D quantification and subsequent morphometric analysis of these phenotypes. Results in the two different mouse strains C57BL/6J-Ghrhr(lit)/J and C3.B6-Ghrhr(lit)/J showed that the cannular and lacunar morphometry and the biomechanical properties were fundamentally different.
Collapse
Affiliation(s)
- Philipp Schneider
- Institute for Biomedical Engineering, University and ETH Zürich, Zürich, Switzerland
| | | | | | | | | | | |
Collapse
|