1
|
Ren H, Li Y, Han C, Yu Y, Shi B, Peng X, Zhang T, Wu S, Yang X, Kim S, Chen L, Tang C. Pancreatic α and β cells are globally phase-locked. Nat Commun 2022; 13:3721. [PMID: 35764654 PMCID: PMC9240067 DOI: 10.1038/s41467-022-31373-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells play a crucial role in glucose homeostasis. However, how α and β cells coordinate to produce various Ca2+ oscillation patterns is still elusive. Using a microfluidic device and transgenic mice, we recorded Ca2+ signals from islet α and β cells, and observed heterogeneous Ca2+ oscillation patterns intrinsic to each islet. After a brief period of glucose stimulation, α and β cells’ oscillations were globally phase-locked. While the activation of α cells displayed a fixed time delay of ~20 s to that of β cells, β cells activated with a tunable period. Moreover, islet α cell number correlated with oscillation frequency. We built a mathematical model of islet Ca2+ oscillation incorporating paracrine interactions, which quantitatively agreed with the experimental data. Our study highlights the importance of cell-cell interaction in generating stable but tunable islet oscillation patterns. The Ca2+ modulated pulsatile glucagon and insulin secretions by pancreatic α and β cells are critical in glucose homeostasis. Here the authors show that the Ca2+ oscillations of α and β cells are phase-locked, and that the oscillation pattern is tuned by paracrine interactions between α and β cells.
Collapse
Affiliation(s)
- Huixia Ren
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yanjun Li
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Chengsheng Han
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Yi Yu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Bowen Shi
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Xiaohong Peng
- Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China
| | - Tianming Zhang
- Yuanpei College, Peking University, Beijing, 100871, China
| | - Shufang Wu
- Center for Quantitative Biology, Peking University, Beijing, 100871, China
| | - Xiaojing Yang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Sneppen Kim
- Niels Bohr Institute, University of Copenhagen, 2100, Copenhagen, Denmark
| | - Liangyi Chen
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China. .,Institute of Molecular Medicine, School of Future Technology, National Biomedical Imaging Center, Peking University, Beijing, 100871, China.
| | - Chao Tang
- Center for Quantitative Biology, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Overi D, Carpino G, Moretti M, Franchitto A, Nevi L, Onori P, De Smaele E, Federici L, Santorelli D, Maroder M, Reid LM, Cardinale V, Alvaro D, Gaudio E. Islet Regeneration and Pancreatic Duct Glands in Human and Experimental Diabetes. Front Cell Dev Biol 2022; 10:814165. [PMID: 35186929 PMCID: PMC8855925 DOI: 10.3389/fcell.2022.814165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/10/2022] [Indexed: 11/20/2022] Open
Abstract
Contrasting evidence is present regarding the contribution of stem/progenitor cell populations to pancreatic regeneration in diabetes. Interestingly, a cell compartment with stem/progenitor cell features has been identified in the pancreatic duct glands (PDGs). The aims of the present study were to evaluate pancreatic islet injury and regeneration, and the participation of the PDG compartment in type 2 diabetic mellitus (T2DM) and in an experimental model of diabetes. Human pancreata were obtained from normal (N = 5) or T2DM (N = 10) cadaveric organ donors. Experimental diabetes was generated in mice by intraperitoneal injection of 150 mg/kg of streptozotocin (STZ, N = 10); N = 10 STZ mice also received daily intraperitoneal injections of 100 µg of human recombinant PDX1 peptide (STZ + PDX1). Samples were examined by immunohistochemistry/immunofluorescence or RT-qPCR. Serum glucose and c-peptide levels were measured in mice. Islets in T2DM patients showed β-cell loss, signs of injury and proliferation, and a higher proportion of central islets. PDGs in T2DM patients had a higher percentage of proliferating and insulin+ or glucagon+ cells compared to controls; pancreatic islets could be observed within pancreatic duct walls of T2DM patients. STZ mice were characterized by reduced islet area compared to controls. PDX1 treatment increased islet area and the percentage of central islets compared to untreated STZ mice but did not revert diabetes. In conclusion, T2DM patients show signs of pancreatic islet regeneration and involvement of the PDG niche. PDX1 administration could support increased endocrine pancreatic regeneration in STZ. These findings contribute to defining the role and participation of stem/progenitor cell compartments within the pancreas.
Collapse
Affiliation(s)
- Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, Division of Health Sciences, University of Rome “Foro Italico”, Rome, Italy
- *Correspondence: Guido Carpino,
| | - Marta Moretti
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Lorenzo Nevi
- Department of Biosciences, University of Milan, Milan, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Luca Federici
- CAST Center for Advanced Studies and Technology and Department of Innovative Technologies in Medicine and Odontoiatry, University “G. D’Annunzio” of Chieti-Pescara, Chieti, Italy
| | - Daniele Santorelli
- Department of Biochemical Sciences “Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Marella Maroder
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Lola M. Reid
- Departments of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, UNC School of Medicine, University of North Carolina, Chapel Hill, NC, United States
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedic Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
3
|
González IA, Kang LI, Williams GA, Liu J, DeNardo DG, Hawkins WG, Chatterjee D. Tumor-insular Complex in Neoadjuvant Treated Pancreatic Ductal Adenocarcinoma Is Associated With Higher Residual Tumor. Am J Surg Pathol 2020; 44:817-825. [PMID: 32091434 PMCID: PMC7225071 DOI: 10.1097/pas.0000000000001454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The tumor microenvironment in pancreatic ductal adenocarcinoma (PDAC) plays a vital role in treatment response, and therefore, patient survival. We and others have observed an intimate association of neoplastic ductal cells with non-neoplastic islet cells, recapitulating the ductoinsular complex. We define this phenomenon as tumor-insular complex (TIC). Herein, we describe the clinicopathologic characteristics of TIC in neoadjuvant treated PDAC cases for the first time. We retrospectively reviewed the pathology of 105 cases of neoadjuvant treated PDAC resected at our institution. TIC was noted in 35 cases (33.3%), the mean tumor bed size was 2.7±1.0 cm, mean percentage of residual tumor 40±28% and mean Residual Tumor Index (RTI) (an index previously established as a prognostic parameter by our group) was 1.1±1.0. TIC was significantly associated with perineural invasion (P=0.001), higher tumor bed size (P=0.007), percentage of residual tumor (P=0.009), RTI (P=0.001), ypT stage (P=0.045), and poor treatment response, grouped by a previously established criteria (P=0.010). Using our prior binary reported prognostic cutoff for RTI of ≤0.35 and >0.35, TIC was associated with a RTI >0.35 (P=0.002). Moreover, patients who did not receive neoadjuvant radiation were associated with a higher frequency of TIC (P=0.003). In this cohort, RTI but not TIC was also shown to be a significant independent prognosticator for recurrence-free survival and overall survival on multivariate analysis. In conclusion, TIC is significantly associated with a more aggressive neoplasm which shows a poor treatment response. Further studies will be needed to better understand the tumor biology of TICs.
Collapse
Affiliation(s)
- Iván A. González
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| | - Gregory A. Williams
- Division of HPB and GI surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Jingxia Liu
- Division of Public Health, Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - David G. DeNardo
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO
| | - William G. Hawkins
- Division of HPB and GI surgery, Department of Surgery, Washington University School of Medicine, Saint Louis, MO
| | - Deyali Chatterjee
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
4
|
Luziga C. Immunoreactivity of cytotoxic T-lymphocyte antigen 2 alpha in mouse pancreatic islet cells. Anat Histol Embryol 2020; 49:382-389. [PMID: 32059262 DOI: 10.1111/ahe.12541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 12/26/2019] [Accepted: 01/29/2020] [Indexed: 11/29/2022]
Abstract
Cells of the pancreatic islets produce several molecules including insulin (beta cells), glucagon (alpha cells), somatostatin (delta cells), pancreatic polypeptide (PP cells), ghrelin (epsilon cells), serotonin (enterochromaffin cells), gastrin (G cells) and small granules of unknown content secreted by the P/D1 cells. Secretion mechanism of some of these molecules is still poorly understood. However, Cathepsin L is shown to regulate insulin exocytosis in beta cells and activate the trypsinogen produced by the pancreatic serous acini cells into trypsin. The structure of the propeptide region of Cathepsin L is homologous to Cytotoxic T-lymphocyte antigen-2 alpha (CTLA-2 alpha) which is also shown to exhibit selective inhibitory activities against Cathepsin L. It was thought that if CTLA-2 alpha was expressed in the pancreas; then, it would be an important regulator of protease activation and insulin secretion. The purpose of this study was, therefore, to examine by immunohistochemistry the cellular localization and distribution pattern of CTLA-2 alpha in the pancreas. Results showed that strong immunoreactivity was specifically detected in the pancreatic islets (endocrine pancreas) but not in the exocrine pancreas and pancreatic stroma. Immunostaining was further performed to investigate more on localization of Cathepsin L in the pancreas. Strong immunoreactivity for Cathepsin L was detected in the pancreatic islets, serous cells and the pancreas duct system. These findings suggest that CTLA-2 alpha may be involved in the proteolytic processing and secretion of insulin through regulation of Cathepsin L and that the regulated inhibition of Cathepsin L may have therapeutic potential for type 1 diabetes.
Collapse
Affiliation(s)
- Claudius Luziga
- Department of Veterinary Anatomy & Pathology, Sokoine University of Agriculture, Morogoro, Tanzania
| |
Collapse
|
5
|
Proshchina AE, Krivova YS, Barabanov VM, Saveliev SV. Pancreatic endocrine cell arrangement during human ontogeny. Acta Histochem 2019; 121:638-645. [PMID: 31146895 DOI: 10.1016/j.acthis.2019.05.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 05/17/2019] [Accepted: 05/22/2019] [Indexed: 12/19/2022]
Abstract
In the human pancreas, various forms of endocrine cell arrangement are found: single endocrine cells, endocrine cell clusters, and mantel, bipolar and mosaic cell (mixed) islets. Our aim was to analyse the distribution and dynamics of insulin-, glucagon- and somatostatin-containing cells within the various forms of endocrine pancreas arrangement during human prenatal development and in adults and to suggest a mechanism of change in the endocrine cell ratio in adult islets. Pancreatic autopsies derived from human foetuses from the 10th to the 40th weeks of development and from adults were examined using histological, immunohistochemical and morphometric methods. During development, the human endocrine pancreas undergoes not only de novo differentiation of endocrine cells and islet formation, but morphogenetic restructuring, which is revealed as a change of the α-, β- and δ-cell ratio in the islets. In particular, increased proportion of glucagon- and somatostatin-containing cells and decreased proportion of β-cells were shown in the largest mosaic islets in adults. Our results indicate that the distribution and proportion of α-, β- and δ-cells depend on the islets size and vascularisation. Studying of the mechanism of such restructuring may contribute to the development of new approaches in the treatment of diabetes mellitus.
Collapse
|
6
|
Epigenetic Erasing and Pancreatic Differentiation of Dermal Fibroblasts into Insulin-Producing Cells are Boosted by the Use of Low-Stiffness Substrate. Stem Cell Rev Rep 2018; 14:398-411. [PMID: 29285667 DOI: 10.1007/s12015-017-9799-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Several studies have demonstrated the possibility to revert differentiation process, reactivating hypermethylated genes and facilitating cell transition to a different lineage. Beside the epigenetic mechanisms driving cell conversion processes, growing evidences highlight the importance of mechanical forces in supporting cell plasticity and boosting differentiation. Here, we describe epigenetic erasing and conversion of dermal fibroblasts into insulin-producing cells (EpiCC), and demonstrate that the use of a low-stiffness substrate positively influences these processes. Our results show a higher expression of pluripotency genes and a significant bigger decrease of DNA methylation levels in 5-azacytidine (5-aza-CR) treated cells plated on soft matrix, compared to those cultured on plastic dishes. Furthermore, the use of low-stiffness also induces a significant increased up-regulation of ten-eleven translocation 2 (Tet2) and histone acetyltransferase 1 (Hat1) genes, and more decreased histone deacetylase enzyme1 (Hdac1) transcription levels. The soft substrate also encourages morphological changes, actin cytoskeleton re-organization, and the activation of the Hippo signaling pathway, leading to yes-associated protein (YAP) phosphorylation and its cytoplasmic translocation. Altogether, this results in increased epigenetic conversion efficiency and in EpiCC acquisition of a mono-hormonal phenotype. Our findings indicate that mechano-transduction related responsed influence cell plasticity induced by 5-aza-CR and improve fibroblast differentiation toward the pancreatic lineage.
Collapse
|
7
|
Kowalska M, Hermyt M, Rupik W. Three-dimensional reconstruction of the embryonic pancreas in the grass snake Natrix natrix L. (Lepidosauria, Serpentes) based on histological studies. ZOOLOGY 2017; 121:91-110. [DOI: 10.1016/j.zool.2016.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 09/27/2016] [Accepted: 11/10/2016] [Indexed: 01/08/2023]
|
8
|
Jansson ET, Comi TJ, Rubakhin SS, Sweedler JV. Single Cell Peptide Heterogeneity of Rat Islets of Langerhans. ACS Chem Biol 2016; 11:2588-95. [PMID: 27414158 DOI: 10.1021/acschembio.6b00602] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Measuring the chemical composition of individual cells in mammalian organs can provide critical insights toward understanding the mechanisms leading to their normal and pathological function. In this work, single cell heterogeneity of islets of Langerhans is characterized with high throughput by microscopy-guided single cell matrix-assisted laser desorption/ionization mass spectrometry. Two levels of chemical heterogeneity were observed from the analysis of more than 3000 individual cells. Within a single islet, cellular heterogeneity was evident from the exclusive expression of the canonical biomarkers glucagon, insulin, pancreatic polypeptide (PP), and somatostatin within α-, β-, γ-, and δ-cells, respectively. We localized the neuropeptide WE-14, a known cell-to-cell signaling molecule, to individual δ-cells. Moreover, several unreported endogenous peptides generated by dibasic site cleavages of PP were detected within individual γ-cells. Of these, PP(27-36) was previously shown to activate the human Y4 receptor, suggesting it has a signaling role in vivo. Heterogeneity in cell composition was also observed between islets as evidenced by a 50-fold larger α-cell population in islets of the dorsal pancreas compared to the ventral-derived pancreatic islets. Finally, PP(27-36) was more abundant in γ-cells from the ventral region of the pancreas, indicating differences in the extent of PP-prohormone processing in the two regions of the pancreas.
Collapse
Affiliation(s)
- Erik T. Jansson
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Troy J. Comi
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Stanislav S. Rubakhin
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Jonathan V. Sweedler
- Department of Chemistry and
the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana—Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Beamish CA, Strutt BJ, Arany EJ, Hill DJ. Insulin-positive, Glut2-low cells present within mouse pancreas exhibit lineage plasticity and are enriched within extra-islet endocrine cell clusters. Islets 2016; 8:65-82. [PMID: 27010375 PMCID: PMC4987018 DOI: 10.1080/19382014.2016.1162367] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 02/25/2016] [Accepted: 03/01/2016] [Indexed: 01/01/2023] Open
Abstract
Regeneration of insulin-producing β-cells from resident pancreas progenitors requires an understanding of both progenitor identity and lineage plasticity. One model suggested that a rare β-cell sub-population within islets demonstrated multi-lineage plasticity. We hypothesized that β-cells from young mice (postnatal day 7, P7) exhibit such plasticity and used a model of islet dedifferentiation toward a ductal epithelial-cell phenotype to test this theory. RIPCre;Z/AP(+/+) mice were used to lineage trace the fate of β-cells during dedifferentiation culture by a human placental alkaline phosphatase (HPAP) reporter. There was a significant loss of HPAP-expressing β-cells in culture, but remaining HPAP(+) cells lost insulin expression while gaining expression of the epithelial duct cell marker cytokeratin-19 (Ck19). Flow cytometry and recovery of β-cell subpopulations from whole pancreas vs. islets suggest that the HPAP(+)Ck19(+) cells had derived from insulin-positive, glucose-transporter-2-low (Ins(+)Glut2(LO)) cells, representing 3.5% of all insulin-expressing cells. The majority of these cells were found outside of islets within clusters of <5 β-cells. These insulin(+)Glut2(LO) cells demonstrated a greater proliferation rate in vivo and in vitro as compared to insulin(+)Glut2(+) cells at P7, were retained into adulthood, and a subset differentiated into endocrine, ductal, and neural lineages, illustrating substantial plasticity. Results were confirmed using RIPCre;ROSA- eYFP mice. Quantitative PCR data indicated these cells possess an immature β-cell phenotype. These Ins(+)Glut2(LO) cells may represent a resident population of cells capable of forming new, functional β-cells, and which may be potentially exploited for regenerative therapies in the future.
Collapse
Affiliation(s)
- Christine A. Beamish
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - Brenda J. Strutt
- Department of Medicine, Western University, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - Edith J. Arany
- Department of Medicine, Western University, London, ON, Canada
- Department of Pathology, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| | - David J. Hill
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
- Department of Medicine, Western University, London, ON, Canada
- Children's Health Research Institute, London, ON, Canada
- Lawson Health Research Institute, St Joseph Health Care, London, ON, Canada
| |
Collapse
|
10
|
Carpino G, Renzi A, Cardinale V, Franchitto A, Onori P, Overi D, Rossi M, Berloco PB, Alvaro D, Reid LM, Gaudio E. Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. J Anat 2015; 228:474-86. [PMID: 26610370 DOI: 10.1111/joa.12418] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2015] [Indexed: 12/13/2022] Open
Abstract
Pancreatic duct glands (PDGs) are tubule-alveolar glands associated with the pancreatic duct system and can be considered the anatomical counterpart of peribiliary glands (PBGs) found within the biliary tree. Recently, we demonstrated that endodermal precursor niches exist fetally and postnatally and are composed functionally of stem cells and progenitors within PBGs and of committed progenitors within PDGs. Here we have characterized more extensively the anatomy of human PDGs as novel niches containing cells with multiple phenotypes of committed progenitors. Human pancreata (n = 15) were obtained from cadaveric adult donors. Specimens were processed for histology, immunohistochemistry and immunofluorescence. PDGs were found in the walls of larger pancreatic ducts (diameters > 300 μm) and constituted nearly 4% of the duct wall area. All of the cells identified were negative for nuclear expression of Oct4, a pluripotency gene, and so are presumably committed progenitors and not stem cells. In the main pancreatic duct and in large interlobular ducts, Sox9(+) cells represented 5-30% of the cells within PDGs and were located primarily at the bottom of PDGs, whereas rare and scattered Sox9(+) cells were present within the surface epithelium. The expression of PCNA, a marker of cell proliferation, paralleled the distribution of Sox9 expression. Sox9(+) PDG cells proved to be Pdx1(+) /Ngn3(+/-) /Oct4A(-) . Nearly 10% of PDG cells were positive for insulin or glucagon. Intercalated ducts contained Sox9(+) /Pdx1(+) /Ngn3(+) cells, a phenotype that is presumptive of committed endocrine progenitors. Some intercalated ducts appeared in continuity with clusters of insulin-positive cells organized in small pancreatic islet-like structures. In summary, PDGs represent niches of a population of Sox9(+) cells exhibiting a pattern of phenotypic traits implicating a radial axis of maturation from the bottoms of the PDGs to the surface of pancreatic ducts. Our results complete the anatomical background that links biliary and pancreatic tracts and could have important implications for the common patho-physiology of biliary tract and pancreas.
Collapse
Affiliation(s)
- Guido Carpino
- Division of Health Sciences, Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| | - Anastasia Renzi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Antonio Franchitto
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Paolo Onori
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| | - Massimo Rossi
- Department of General Surgery and Organ Transplantation, Sapienza University of Rome, Rome, Italy
| | | | - Domenico Alvaro
- Department of Medico-Surgical Sciences and Biotechnologies, Polo Pontino, Sapienza University of Rome, Rome, Italy
| | - Lola M Reid
- Department of Cell Biology and Physiology, Program in Molecular Biology and Biotechnology, Lineberger Comprehensive Cancer Center, UNC School of Medicine, Chapel Hill, NC, USA
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopedics Sciences, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
11
|
Dolenšek J, Rupnik MS, Stožer A. Structural similarities and differences between the human and the mouse pancreas. Islets 2015; 7:e1024405. [PMID: 26030186 PMCID: PMC4589993 DOI: 10.1080/19382014.2015.1024405] [Citation(s) in RCA: 208] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Mice remain the most studied animal model in pancreas research. Since the findings of this research are typically extrapolated to humans, it is important to understand both similarities and differences between the 2 species. Beside the apparent difference in size and macroscopic organization of the organ in the 2 species, there are a number of less evident and only recently described differences in organization of the acinar and ductal exocrine tissue, as well as in the distribution, composition, and architecture of the endocrine islets of Langerhans. Furthermore, the differences in arterial, venous, and lymphatic vessels, as well as innervation are potentially important. In this article, the structure of the human and the mouse pancreas, together with the similarities and differences between them are reviewed in detail in the light of conceivable repercussions for basic research and clinical application.
Collapse
Affiliation(s)
- Jurij Dolenšek
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
| | - Marjan Slak Rupnik
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
- Institute of Physiology; Center for Physiology and Pharmacology; Medical University of Vienna; Vienna, Austria
| | - Andraž Stožer
- Institute of Physiology; Faculty of Medicine; University of Maribor; Maribor, Slovenia
- Centre for Open Innovations and Research Core@UM; University of Maribor; Maribor, Slovenia
| |
Collapse
|
12
|
Nyitray CE, Chavez MG, Desai TA. Compliant 3D microenvironment improves β-cell cluster insulin expression through mechanosensing and β-catenin signaling. Tissue Eng Part A 2014; 20:1888-95. [PMID: 24433489 DOI: 10.1089/ten.tea.2013.0692] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Type 1 diabetes is chronic disease with numerous complications and currently no cure. Tissue engineering strategies have shown promise in providing a therapeutic solution, but maintenance of islet function and survival within these therapies represents a formidable challenge. The islet microenvironment may hold the key for proper islet maintenance. To elucidate the microenvironmental conditions necessary for improved islet function and survival, three-dimensional (3D) polyacrylamide cell scaffolds were fabricated with stiffnesses of 0.1 and 10 kPa to regulate the spatial and mechanical control of biosignals. Specifically, we show a significant increase in insulin mRNA expression of 3D primary mouse islet-derived and Min6-derived β-cell clusters grown on compliant 0.1 kPa scaffolds. Moreover, these compliant 0.1 kPa scaffolds also increase glucose sensitivity in Min6-derived β-cell clusters as demonstrated by the increased glucose stimulation index. Our data suggest that stiffness-specific insulin processing is regulated through the myosin light chain kinase (MLCK) and Rho-associated protein kinase (ROCK) mechanosensing pathways. Additionally, β-catenin is required for regulation of stiffness-dependent insulin expression. Through activation or inhibition of β-catenin signaling, reversible control of insulin expression is achieved on the compliant 0.1 kPa and overly stiff 10 kPa substrates. Understanding the role of the microenvironment on islet function can enhance the therapeutic approaches necessary to treat diabetes for improving insulin sensitivity and response.
Collapse
Affiliation(s)
- Crystal E Nyitray
- 1 Program in Chemistry & Chemical Biology, University of California , San Francisco, San Francisco, California
| | | | | |
Collapse
|