1
|
Shah MZ, Rotich NC, Okorafor EA, Oestreicher Z, Demidovich G, Eapen J, Henoch Q, Kilbey J, Prempeh G, Bates A, Page RC, Lorigan GA, Konkolewicz D. Vinyl Ether Maleic Acid Polymers: Tunable Polymers for Self-Assembled Lipid Nanodiscs and Environments for Membrane Proteins. Biomacromolecules 2024; 25:6611-6623. [PMID: 39283997 PMCID: PMC11473226 DOI: 10.1021/acs.biomac.4c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Native lipid bilayer mimetics, including those that use amphiphilic polymers, are important for the effective study of membrane-bound peptides and proteins. Copolymers of vinyl ether monomers and maleic anhydride were developed with controlled molecular weights and hydrophobicity through reversible addition-fragmentation chain-transfer polymerization. After polymerization, the maleic anhydride units can be hydrolyzed, giving dicarboxylates. The vinyl ether and maleic anhydride copolymerized in a close to alternating manner, giving essentially alternating hydrophilic maleic acid units and hydrophobic vinyl ether units along the backbone after hydrolysis. The vinyl ether monomers and maleic acid polymers self-assembled with lipids, giving vinyl ether maleic acid lipid particles (VEMALPs) with tunable sizes controlled by either the vinyl ether hydrophobicity or the polymer molecular weight. These VEMALPs were able to support membrane-bound proteins and peptides, creating a new class of lipid bilayer mimetics.
Collapse
Affiliation(s)
- Muhammad Zeeshan Shah
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Nancy C. Rotich
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Evelyn A. Okorafor
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Zachery Oestreicher
- Center for Advanced Microscopy and Imaging, Miami University, Oxford, OH, 45056, USA
| | - Gabrielle Demidovich
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Jeremy Eapen
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Quinton Henoch
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Julia Kilbey
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Godfred Prempeh
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Alison Bates
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Richard C. Page
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Gary A. Lorigan
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, 651 E High St, Oxford, OH, 45056, USA
| |
Collapse
|
2
|
Zhang W, Zeng C, Zhang M, Zhao C, Chao D, Zhou G, Zhang C. MXene Triggered Free Radical Polymerization in Minutes Toward All-Printed Zn-Ion Hybrid Capacitors and Beyond. Angew Chem Int Ed Engl 2024:e202413728. [PMID: 39276037 DOI: 10.1002/anie.202413728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/30/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Additive manufacturing of (quasi-) solid-state (QSS) electrochemical energy storage devices (EES) highlights the significance of gel polymer electrolytes (GPEs) design. Creating well-bonded electrode-GPEs interfaces in the electrode percolative network via printing leads to large-scale production of customized EES with boosted electrochemical performance but has proven to be quite challenging. Herein, we report on a versatile, universal and scalable approach to engineer a controllable, seamless electrode-GPEs interface via free radical polymerization (FRP) triggered by MXene at room temperature. Importantly, MXene reduces the dissociation enthalpy of persulfate initiators and significantly shortens the induction period accelerated by SO4 -, enabling the completion of FRP within minutes. The as-formed well-bonded electrode-GPEs interface homogenizes the electrical and concentration fields (i.e., Zn2+), therefore suppressing the dendrites formation, which translates to long-term cycling (50,000 times), high energy density (105.5 Wh kg-1) and power density (9231 W kg-1) coupled with excellent stability upon deformation in the zinc-ion hybrid capacitors (ZHCs). Moreover, the critical switch of the rheological behaviours of the polymer electrolyte (as aqueous inks in still state and become solids once triggered by MXene) perfectly ensures the direct all-printing of electrodes and GPEs with well-bonded interface in between, opening vast possibilities for all-printed QSS EES beyond ZHCs.
Collapse
Affiliation(s)
- Wentao Zhang
- College of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Chuijin Zeng
- College of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Mengtian Zhang
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chendong Zhao
- College of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Dongliang Chao
- Laboratory of Advanced Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, State Key Laboratory of Molecular Engineering of Polymers, and School of Chemistry and Materials, Fudan University, Shanghai, 200433, P. R. China
| | - Guangmin Zhou
- Shenzhen Geim Graphene Center, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Chuanfang Zhang
- College of Materials Science & Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
3
|
Ni M, Gui S, Fu Y, Peng Y, Ding Q. Synthesis of 2,4-Dicyanoalkylated Benzoxazines through the Radical-Mediated Cascade Cyclization of Isocyanides with AIBN under Metal- and Additive-Free Conditions. J Org Chem 2024; 89:3970-3976. [PMID: 38422048 DOI: 10.1021/acs.joc.3c02809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
A general and novel method for the radical cascade cyclization of aryl isocyanides with AIBN has been described. This strategy provides straightforward access to various 2,4-dicyanoalkylated benzoxazines in moderate to good yields under metal- and additive-free conditions. The reaction can apply to a gram scale and tolerate diverse functional groups. 2,4-Dicyanoalkylated benzoxazine derivatives feature a large Stokes shift and intramolecular charge transfer properties.
Collapse
Affiliation(s)
- Mengjia Ni
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Shuanggen Gui
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yang Fu
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Yiyuan Peng
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| | - Qiuping Ding
- Key Laboratory of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Key Laboratory for Green Chemistry of Jiangxi Province, Jiangxi Normal University, Nanchang 330022, Jiangxi, China
| |
Collapse
|
4
|
Zhu Y, Cao Y, Fu B, Wang C, Shu S, Zhu P, Wang D, Xu H, Zhong N, Cai D. Waste milk humification product can be used as a slow release nano-fertilizer. Nat Commun 2024; 15:128. [PMID: 38167856 PMCID: PMC10761720 DOI: 10.1038/s41467-023-44422-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
The demand for milk has increased globally, accompanied by an increase in waste milk. Here, we provide an artificial humification technology to recycle waste milk into an agricultural nano-fertilizer. We use KOH-activated persulfate to convert waste milk into fulvic-like acid and humic-like acid. We mix the product with attapulgite to obtain a slow-release nano fulvic-like acid fertilizer. We apply this nano-fertilizer to chickweeds growing in pots, resulting in improved yield and root elongation. These results indicate that waste milk could be recycled for agricultural purposes, however, this nano-fertilizer needs to be tested further in field experiments.
Collapse
Affiliation(s)
- Yanping Zhu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Yuxuan Cao
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Bingbing Fu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Chengjin Wang
- Department of Civil Engineering, University of Manitoba, Winnipeg, MB, R3T 5V6, Canada
| | - Shihu Shu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Pengjin Zhu
- Guangxi Subtropical Crops Research Institute, Nanning, 530000, People's Republic of China
| | - Dongfang Wang
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - He Xu
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China
| | - Naiqin Zhong
- Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, People's Republic of China
| | - Dongqing Cai
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, People's Republic of China.
| |
Collapse
|
5
|
García de la Concepción J, Flores-Jiménez M, Cuccia LA, Light ME, Viedma C, Cintas P. Revisiting Homochiral versus Heterochiral Interactions through a Long Detective Story of a Useful Azobis-Nitrile and Puzzling Racemate. CRYSTAL GROWTH & DESIGN 2023; 23:5719-5733. [PMID: 37547876 PMCID: PMC10402293 DOI: 10.1021/acs.cgd.3c00372] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/08/2023] [Indexed: 08/08/2023]
Abstract
This paper documents and reinvestigates the solid-state and crystal structures of 4,4'-azobis-4-cyanopentanoic acid (ACPA), a water-soluble azobis-nitrile of immense utility as a radical initiator in living polymerizations and a labile mechanophore that can be embedded within long polymer chains to undergo selective scission under mechanical activation. Surprisingly, for such applications, both the commercially available reagent and their derivatives are used as "single initiators" when this azonitrile is actually a mixture of stereoisomers. Although the racemate and meso compounds were identified more than half a century ago and their enantiomers were separated by classical resolution, there have been confusing narratives dealing with their characterization, the existence of a conglomeratic phase, and fractional crystallization. Our results report on the X-ray crystal structures of all stereoisomers for the first time, along with further details on enantiodiscrimination and the always intriguing arguments accounting for the stability of homochiral versus heterochiral crystal aggregates. To this end, metadynamic (MTD) simulations on stereoisomer molecular aggregates were performed to capture the incipient nucleation events at the picosecond time scale. This analysis sheds light on the driving homochiral aggregation of ACPA enantiomers.
Collapse
Affiliation(s)
- Juan García de la Concepción
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Mirian Flores-Jiménez
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| | - Louis A. Cuccia
- Department
of Chemistry and Biochemistry, Concordia
University, 7141 Sherbrooke
Street West, H4B 1R6 Montreal, Canada
| | - Mark E. Light
- Department
of Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, U.K.
| | - Cristóbal Viedma
- Department
of Crystallography and Mineralogy, University
Complutense, 28040 Madrid, Spain
| | - Pedro Cintas
- Department
of Organic and Inorganic Chemistry, Faculty of Sciences, and IACYS-Green
Chemistry and Sustainable Development Unit, University of Extremadura, E-06006 Badajoz, Spain
| |
Collapse
|
6
|
Tanaka J, Li J, Clouthier SM, You W. Step-growth polymerization by the RAFT process. Chem Commun (Camb) 2023. [PMID: 37287313 DOI: 10.1039/d3cc01087b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Reversible Addition-Fragmentation Chain Transfer (RAFT) step-growth polymerization is an emerging method that synergistically combines the benefits of RAFT polymerization (functional group and user-friendly nature) and step-growth polymerization (versatility of the polymer backbone). This new polymerization method is generally achieved by using bifunctional reagents of monomer and Chain Transfer Agent (CTA), that efficiently yield Single Monomer Unit Insertion (SUMI) adducts under stoichiometrically balanced conditions. This review covers a brief history of the RAFT-SUMI process and its transformation into RAFT step-growth polymerization, followed by a comprehensive discussion of various RAFT step-growth systems. Furthermore, characterizing the molecular weight evolution of step-growth polymerization is elaborated based on the Flory model. Finally, a formula is introduced to describe the efficiency of the RAFT-SUMI process, assuming rapid chain transfer equilibrium. Examples of reported RAFT step-growth and SUMI systems are then categorized based on the driving force.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Jiajia Li
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | | | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
7
|
Petřík J, Zůza D, Heřt J, Řezanka P, Krejčík L, Hrubcová K, Štěpánek F. Azobisisobutyronitrile loaded on mesoporous silica particles: A new stressor for solid-state oxidative forced degradation studies. J Pharm Biomed Anal 2023; 232:115417. [PMID: 37120974 DOI: 10.1016/j.jpba.2023.115417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 03/09/2023] [Accepted: 04/21/2023] [Indexed: 05/02/2023]
Abstract
A new approach for testing drug sensitivity to autooxidative degradation in the solid state is demonstrated in this work. A novel solid-state form of stressing agent for autooxidation has been proposed, based on azobisisobutyronitrile loaded into mesoporous silica carrier particles. The new solid-state form of the stressing agent was applied in degradation studies of two active pharmaceutical ingredients: bisoprolol and abiraterone acetate. The effectiveness and predictivity of the method were evaluated by comparing impurity profiles with those obtained by traditional stability testing of commercial tablets containing the investigated APIs. The results obtained by the new solid-state stressor were also compared with those obtained by an existing method for testing peroxide oxidative degradation in the solid state using a complex of polyvinylpyrrolidone with hydrogen peroxide. It was found that the new silica particle-based stressor was able to effectively predict which impurities could be formed by autooxidation in tablets and that this new approach is complementary to methods for testing peroxide oxidative degradation known from the literature.
Collapse
Affiliation(s)
- Jakub Petřík
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic.
| | - David Zůza
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic; Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| | - Jakub Heřt
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic
| | - Pavel Řezanka
- Department of Analytical Chemistry, University of Chemistry and Technology, Prague, Technická 5, 166 28 Prague, Czech Republic
| | - Lukáš Krejčík
- Zentiva, k.s., Praha, U Kabelovny 130, 102 37 Praha 10, Czech Republic
| | - Kateřina Hrubcová
- Department of Analytical Chemistry, Faculty of Science, Charles University, Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague 6, Czech Republic
| |
Collapse
|
8
|
Boyer C, Kamigaito M, Satoh K, Moad G. Radical-Promoted Single-unit Monomer Insertion (SUMI) [aka. Reversible-Deactivation Radical Addition (RDRA)]. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Bednarz S, Bujok S, Mielczarek K, Świergosz T, Wierzbicki S, Konefał R, Konefał M, Nevoralová M, Pavlova E, Beneš H. Synthesis of low-molecular weight itaconic acid polymers as nanoclay dispersants and dispersion stabilizers. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Evolution of Molar Mass Distributions Using a Method of Partial Moments: Initiation of RAFT Polymerization. Polymers (Basel) 2022; 14:polym14225013. [PMID: 36433139 PMCID: PMC9696826 DOI: 10.3390/polym14225013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
We describe a method of partial moments devised for accurate simulation of the time/conversion evolution of polymer composition and molar mass. Expressions were derived that enable rigorous evaluation of the complete molar mass and composition distribution for shorter chain lengths (e.g., degree of polymerization, Xn = N < 200 units) while longer chains (Xn ≥ 200 units) are not neglected, rather they are explicitly considered in terms of partial moments of the molar mass distribution, μxN(P)=∑n=N+1∞nx[Pn] (where P is a polymeric species and n is its’ chain length). The methodology provides the exact molar mass distribution for chains Xn < N, allows accurate calculation of the overall molar mass averages, the molar mass dispersity and standard deviations of the distributions, provides closure to what would otherwise be an infinite series of differential equations, and reduces the stiffness of the system. The method also allows for the inclusion of the chain length dependence of the rate coefficients associated with the various reaction steps (in particular, termination and propagation) and the various side reactions that may complicate initiation or initialization. The method is particularly suited for the detailed analysis of the low molar mass portion of molar mass distributions of polymers formed by radical polymerization with reversible addition-fragmentation chain transfer (RAFT) and is relevant to designing the RAFT-synthesis of sequence-defined polymers. In this paper, we successfully apply the method to compare the behavior of thermally initiated (with an added dialkyldiazene initiator) and photo-initiated (with a RAFT agent as a direct photo-iniferter) RAFT-single-unit monomer insertion (RAFT-SUMI) and oligomerization of N,N-dimethylacrylamide (DMAm).
Collapse
|
11
|
Fellows CM, Jones RG, Keddie DJ, Luscombe CK, Matson JB, Matyjaszewski K, Merna J, Moad G, Nakano T, Penczek S, Russell GT, Topham PD. Terminology for chain polymerization (IUPAC Recommendations 2021). PURE APPL CHEM 2022. [DOI: 10.1515/pac-2020-1211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Chain polymerizations are defined as chain reactions where the propagation steps occur by reaction between monomer(s) and active site(s) on the polymer chains with regeneration of the active site(s) at each step. Many forms of chain polymerization can be distinguished according to the mechanism of the propagation step (e.g., cyclopolymerization – when rings are formed, condensative chain polymerization – when propagation is a condensation reaction, group-transfer polymerization, polyinsertion, ring-opening polymerization – when rings are opened), whether they involve a termination step or not (e.g., living polymerization – when termination is absent, reversible-deactivation polymerization), whether a transfer step is involved (e.g., degenerative-transfer polymerization), and the type of chain carrier or active site (e.g., radical, ion, electrophile, nucleophile, coordination complex). The objective of this document is to provide a language for describing chain polymerizations that is both readily understandable and self-consistent, and which covers recent developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Christopher M. Fellows
- School of Science and Technology, University of New England , Armidale , NSW 2351 , Australia
| | - Richard G. Jones
- University of Kent, School of Physical Sciences , Canterbury CT2 7NZ , UK
| | - Daniel J. Keddie
- School of Biology, Chemistry and Forensic Science, University of Wolverhampton , Wulfruna Street , Wolverhampton , West Midlands WV1 1LY , UK
| | - Christine K. Luscombe
- pi-Conjugated Polymer Unit, Okinawa Institute of Science and Technology Graduate University , Onna-son , Okinawa , 904-0495 , Japan
| | - John B. Matson
- Department of Chemistry & Macromolecules Innovation Institute , Virginia Tech , Blacksburg , VA 24061 , USA
| | | | - Jan Merna
- Department of Polymers , University of Chemistry and Technology Prague , 166 28 , Prague 6 , Czech Republic
| | - Graeme Moad
- CSIRO Manufacturing , Clayton , VIC 3168 , Australia
| | - Tamaki Nakano
- Macromolecular Science Research Division, Institute for Catalysis, Hokkaido University , Sapporo , 001-0021 , Japan
| | - Stanislaw Penczek
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences , Lodz , Poland
| | - Gregory T. Russell
- School of Chemical and Physical Sciences, University of Canterbury , Private Bag 4800 , Christchurch 8140 , New Zealand
| | - Paul D. Topham
- Chemical Engineering and Applied Chemistry , Aston University , Birmingham , B4 7ET , UK
| |
Collapse
|
12
|
Random Copolymers of Styrene with Pendant Fluorophore Moieties: Synthesis and Applications as Fluorescence Sensors for Nitroaromatics. Molecules 2022; 27:molecules27206957. [PMID: 36296548 PMCID: PMC9612241 DOI: 10.3390/molecules27206957] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 11/17/2022] Open
Abstract
Five random copolymers comprising styrene and styrene with pendant fluorophore moieties, namely pyrene, naphthalene, phenanthrene, and triphenylamine, in molar ratios of 10:1, were synthesized and employed as fluorescent sensors. Their photophysical properties were investigated using absorption and emission spectral analyses in dichloromethane solution and in solid state. All copolymers possessed relative quantum yields up to 0.3 in solution and absolute quantum yields up to 0.93 in solid state, depending on their fluorophore components. Fluorescence studies showed that the emission of these copolymers is highly sensitive towards various nitroaromatic compounds, both in solution and in the vapor phase. The detection limits of these fluorophores for nitroaromatic compounds in dichloromethane solution proved to be in the range of 10−6 to 10−7 mol/L. The sensor materials for new hand-made sniffers based on these fluorophores were prepared by electrospinning and applied for the reliable detection of nitrobenzene vapors at 1 ppm in less than 5 min.
Collapse
|
13
|
Chi S, Yu Y, Zhang M. An investigation on chain transfer to monomers and initiators, termination of radical chains and primary radicals in EVA copolymerization process based on DFT calculation and microkinetic simulation. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
14
|
Sun Z, Ma W, Cao Y, Wei T, Mo X, Chow HY, Tan Y, Cheung CH, Liu J, Lee HK, Tse EC, Liu H, Li X. Superfast desulfurization for protein chemical synthesis and modification. Chem 2022. [DOI: 10.1016/j.chempr.2022.07.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
15
|
Synthesis of cellulose-g-poly(acrylic acid) with high water absorbency using pineapple-leaf extracted cellulose fibers. Carbohydr Polym 2022; 288:119421. [DOI: 10.1016/j.carbpol.2022.119421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/14/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
|
16
|
Qin T, Xi Z, Zhao L, Yuan W. Monte Carlo simulation of sequential structure control of AN-MA-IA aqueous copolymerization by different operation modes. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.06.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Agboluaje M, Hutchinson RA. Measurement and Modeling of Methyl Acrylate Radical Polymerization in Polar and Nonpolar Solvents. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maryam Agboluaje
- Department of Chemical Engineering, Queen’s University, Dupuis Hall, Kingston, Ontario K7L3N6, Canada
| | - Robin A. Hutchinson
- Department of Chemical Engineering, Queen’s University, Dupuis Hall, Kingston, Ontario K7L3N6, Canada
| |
Collapse
|
18
|
Boeck P, Archer N, Tanaka J, You W. Reversible Addition-Fragmentation Chain Transfer Step-Growth Polymerization with Commercially Available Inexpensive Bis-Maleimides. Polym Chem 2022. [DOI: 10.1039/d2py00236a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, commercially available N-aromatic substituted bismaleimides were used in RAFT step-growth polymerization for the first time. In our initial report (J. Am. Chem. Soc. 2021, 143 (39), 15918-15923), maleimide precursors...
Collapse
|
19
|
Comparison of two cationic chitosan-based flocculants prepared by photocatalysis and photoinitiation systems: Synthesis mechanism, structure and performance in water treatment. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Hartlieb M. Photo-Iniferter RAFT Polymerization. Macromol Rapid Commun 2021; 43:e2100514. [PMID: 34750911 DOI: 10.1002/marc.202100514] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/03/2021] [Indexed: 12/27/2022]
Abstract
Light-mediated polymerization techniques offer distinct advantages over polymerization reactions fueled by thermal energy, such as high spatial and temporal control as well as the possibility to work under mild reaction conditions. Reversible addition-fragmentation chain-transfer (RAFT) polymerization is a highly versatile radical polymerization method that can be utilized to control a variety of monomers and produce a vast number of complex macromolecular structures. The use of light to drive a RAFT-polymerization is possible via multiple routes. Besides the use of photo-initiators, or photo-catalysts, the direct activation of the chain transfer agent controlling the RAFT process in a photo-iniferter (PI) process is an elegant way to initiate and control polymerization reactions. Within this review, PI-RAFT polymerization and its advantages over the conventional RAFT process are discussed in detail.
Collapse
Affiliation(s)
- Matthias Hartlieb
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 24-25, 14476, Potsdam, Germany.,Fraunhofer Institute for Applied Polymer Research (IAP), Geiselbergstraße 69, 14476, Potsdam, Germany
| |
Collapse
|
21
|
Bradford KGE, Petit LM, Whitfield R, Anastasaki A, Barner-Kowollik C, Konkolewicz D. Ubiquitous Nature of Rate Retardation in Reversible Addition-Fragmentation Chain Transfer Polymerization. J Am Chem Soc 2021; 143:17769-17777. [PMID: 34662103 DOI: 10.1021/jacs.1c08654] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Reversible addition-fragmentation chain transfer (RAFT) polymerization is one of the most powerful reversible deactivation radical polymerization (RDRP) processes. Rate retardation is prevalent in RAFT and occurs when polymerization rates deviate from ideal conventional radical polymerization kinetics. Herein, we explore beyond what was initially thought to be the culprit of rate retardation: dithiobenzoate chain transfer agents (CTA) with more active monomers (MAMs). Remarkably, polymerizations showed that rate retardation occurs in systems encompassing the use of trithiocarbonates and xanthates CTAs with varying monomeric activities. Both the simple slow fragmentation and intermediate radical termination models show that retardation of all these systems can be described by using a single relationship for a variety of monomer reactivity and CTAs, suggesting rate retardation is a universal phenomenon of varying severity, independent of CTA composition and monomeric activity level.
Collapse
Affiliation(s)
- Kate G E Bradford
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Leilah M Petit
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| | - Richard Whitfield
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8092, Switzerland
| | - Athina Anastasaki
- Laboratory of Polymeric Materials, Department of Materials, ETH Zurich, Vladimir-Prelog-Weg 5, Zurich 8092, Switzerland
| | - Christopher Barner-Kowollik
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology (QUT), 2 George Street, Brisbane, Queensland 4000, Australia
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, United States
| |
Collapse
|
22
|
Tanaka J, Archer NE, Grant MJ, You W. Reversible-Addition Fragmentation Chain Transfer Step-Growth Polymerization. J Am Chem Soc 2021; 143:15918-15923. [PMID: 34581557 DOI: 10.1021/jacs.1c07553] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Reversible-addition fragmentation chain transfer (RAFT) polymerization has been widely explored since its discovery due to its structural precision, versatility, and efficiency. However, the lack of tunability of the polymer backbone limits some applications. Herein, we synergistically combine RAFT and step-growth polymerization mechanisms, by employing a highly selective insertion process of a single monomer with a RAFT agent, to achieve RAFT step-growth polymerization. A unique feature of the RAFT step-growth polymers is that each backbone repeat unit bears a pendant RAFT agent, which can subsequently graft side chains in a second polymerization step and afford molecular brush polymers. Enabled by cleavable backbone functionality, we demonstrate transformation of the resulting brushlike polymers into linear chains of uniform size upon a stimulus.
Collapse
Affiliation(s)
- Joji Tanaka
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Noel Edward Archer
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Michael Jeffery Grant
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| | - Wei You
- Department of Chemistry, University of North Carolina, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
23
|
Abdollahi M, Akbari Hajiataloo M. Radical polymerization of butadiene mediated by molecular iodine: a kinetic study of solution homopolymerization. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02617-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Pirman T, Ocepek M, Likozar B. Radical Polymerization of Acrylates, Methacrylates, and Styrene: Biobased Approaches, Mechanism, Kinetics, Secondary Reactions, and Modeling. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01649] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- T. Pirman
- Helios TBLUS d.o.o., Količevo 65, 1230 Domžale, Slovenia
| | - M. Ocepek
- Helios TBLUS d.o.o., Količevo 65, 1230 Domžale, Slovenia
| | - B. Likozar
- Department of Catalysis and Chemical Reaction Engineering, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| |
Collapse
|
25
|
Qin T, Pan X, Xi Z, Zhao L, Yuan W. Macromolecular Chain Structure Regulation of AN–MA–IA Aqueous Copolymerization with a Water-Soluble Azo Initiator AIBA. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tong Qin
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xun Pan
- Flinders Institute for Nanoscale Science and Technology, Flinders University, Sturt Road, Bedford Park, SA 5042, Australia
| | - Zhenhao Xi
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ling Zhao
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- College of Chemistry and Chemical Engineering, XinJiang University, Urumqi 830046, Xinjiang, China
| | - Weikang Yuan
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
26
|
Abdollahi M, Akbari Hajiataloo M. Radical polymerization of butadiene mediated by molecular iodine: A comprehensive kinetic study on solution copolymerization with acrylonitrile. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
27
|
Alex J, Ulbrich J, Rosales-Guzmán M, Weber C, Schubert US, Guerrero-Sanchez C. Kinetic investigations on homo- and co-polymerizations of pentafluorophenyl (meth)acrylates. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
28
|
Bray C, Li G, Postma A, Strover LT, Wang J, Moad G. Initiation of RAFT Polymerization: Electrochemically Initiated RAFT Polymerization in Emulsion (Emulsion eRAFT), and Direct PhotoRAFT Polymerization of Liquid Crystalline Monomers. Aust J Chem 2021. [DOI: 10.1071/ch20260] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We report on two important advances in radical polymerization with reversible addition–fragmentation chain transfer (RAFT polymerization). (1) Electrochemically initiated emulsion RAFT (eRAFT) polymerization provides rapid polymerization of styrene at ambient temperature. The electrolytes and mediators required for eRAFT are located in the aqueous continuous phase separate from the low-molar-mass-dispersity macroRAFT agent mediator and product in the dispersed phase. Use of a poly(N,N-dimethylacrylamide)-block-poly(butyl acrylate) amphiphilic macroRAFT agent composition means that no added surfactant is required for colloidal stability. (2) Direct photoinitiated (visible light) RAFT polymerization provides an effective route to high-purity, low-molar-mass-dispersity, side chain liquid-crystalline polymers (specifically, poly(4-biphenyl acrylate)) at high monomer conversion. Photoinitiation gives a product free from low-molar-mass initiator-derived by-products and with minimal termination. The process is compared with thermal dialkyldiazene initiation in various solvents. Numerical simulation was found to be an important tool in discriminating between the processes and in selecting optimal polymerization conditions.
Collapse
|
29
|
One-pot synthesis of cross-linked nonspherical polystyrene particles via dispersion polymerization: the effect of polymerization conditions on the morphology of the particles. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-020-02387-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
30
|
Guimarães TR, Bong YL, Thompson SW, Moad G, Perrier S, Zetterlund PB. Polymerization-induced self-assembly via RAFT in emulsion: effect of Z-group on the nucleation step. Polym Chem 2021. [DOI: 10.1039/d0py01311k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
It is demonstrated that the nature of the Z-group of trithiocarbonate RAFT agents can have a major effect on the nucleation step of aqueous RAFT PISA performed as emulsion polymerization.
Collapse
Affiliation(s)
- Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Y. Loong Bong
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Steven W. Thompson
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| | - Graeme Moad
- CSIRO Manufacturing Flagship
- Clayton South
- Australia
| | - Sébastien Perrier
- Department of Chemistry
- University of Warwick
- Coventry
- UK
- Warwick Medical School
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD)
- School of Chemical Engineering
- The University of New South Wales
- Sydney
- Australia
| |
Collapse
|
31
|
Reversible-deactivation radical polymerization (Controlled/living radical polymerization): From discovery to materials design and applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101311] [Citation(s) in RCA: 302] [Impact Index Per Article: 75.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Nothling MD, Fu Q, Reyhani A, Allison‐Logan S, Jung K, Zhu J, Kamigaito M, Boyer C, Qiao GG. Progress and Perspectives Beyond Traditional RAFT Polymerization. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001656. [PMID: 33101866 PMCID: PMC7578854 DOI: 10.1002/advs.202001656] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/17/2020] [Indexed: 05/09/2023]
Abstract
The development of advanced materials based on well-defined polymeric architectures is proving to be a highly prosperous research direction across both industry and academia. Controlled radical polymerization techniques are receiving unprecedented attention, with reversible-deactivation chain growth procedures now routinely leveraged to prepare exquisitely precise polymer products. Reversible addition-fragmentation chain transfer (RAFT) polymerization is a powerful protocol within this domain, where the unique chemistry of thiocarbonylthio (TCT) compounds can be harnessed to control radical chain growth of vinyl polymers. With the intense recent focus on RAFT, new strategies for initiation and external control have emerged that are paving the way for preparing well-defined polymers for demanding applications. In this work, the cutting-edge innovations in RAFT that are opening up this technique to a broader suite of materials researchers are explored. Emerging strategies for activating TCTs are surveyed, which are providing access into traditionally challenging environments for reversible-deactivation radical polymerization. The latest advances and future perspectives in applying RAFT-derived polymers are also shared, with the goal to convey the rich potential of RAFT for an ever-expanding range of high-performance applications.
Collapse
Affiliation(s)
- Mitchell D. Nothling
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Qiang Fu
- Centre for Technology in Water and Wastewater Treatment (CTWW)School of Civil and Environmental EngineeringUniversity of Technology SydneyUltimoNSW2007Australia
| | - Amin Reyhani
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Stephanie Allison‐Logan
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| | - Kenward Jung
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Jian Zhu
- College of ChemistryChemical Engineering and Material ScienceDepartment of Polymer Science and EngineeringSoochow UniversitySuzhou215123China
| | - Masami Kamigaito
- Department of Molecular and Macromolecular ChemistryGraduate School of EngineeringNagoya UniversityFuro‐cho, Chikusa‐kuNagoya464‐8603Japan
| | - Cyrille Boyer
- Centre for Advanced Macromolecular Design (CAMD) and Australian Centre for NanoMedicine (ACN)School of Chemical EngineeringUNWSSydneyNSW2052Australia
| | - Greg G. Qiao
- Polymer Science GroupDepartment of Chemical EngineeringThe University of MelbourneParkvilleVIC3010Australia
| |
Collapse
|
33
|
Grishin ID, Knyazeva NA, Penkal’ AM. Novel ruthenium(ii) and (iii) carborane complexes with diphosphine ligands and their application in radical polymerization. Russ Chem Bull 2020. [DOI: 10.1007/s11172-020-2931-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
34
|
|
35
|
Sun Z, Wang M, Li Z, Choi B, Mulder RJ, Feng A, Moad G, Thang SH. Versatile Approach for Preparing PVC-Based Mikto-Arm Star Additives Based on RAFT Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00125] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhonghe Sun
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education School of Chemistry, Beihang University, Beijing 100191, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Mu Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Sinopec Research Institute of Petroleum Engineering, Beijing 100101, China
| | - Zhi Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bonnie Choi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Roger J. Mulder
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - Anchao Feng
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Graeme Moad
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
| | - San H. Thang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Manufacturing, Clayton, Victoria 3168, Australia
- School of Chemistry, Monash University, Clayton Campus, Clayton, Victoria 3800, Australia
| |
Collapse
|
36
|
Tanaka J, Häkkinen S, Boeck PT, Cong Y, Perrier S, Sheiko SS, You W. Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angew Chem Int Ed Engl 2020; 59:7203-7208. [DOI: 10.1002/anie.202000700] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 02/14/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Joji Tanaka
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Satu Häkkinen
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Parker T. Boeck
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Yidan Cong
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Sergei S. Sheiko
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Wei You
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| |
Collapse
|
37
|
Tanaka J, Häkkinen S, Boeck PT, Cong Y, Perrier S, Sheiko SS, You W. Orthogonal Cationic and Radical RAFT Polymerizations to Prepare Bottlebrush Polymers. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000700] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Joji Tanaka
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Satu Häkkinen
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
| | - Parker T. Boeck
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Yidan Cong
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Gibbet Hill Road Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville VIC 3052 Australia
| | - Sergei S. Sheiko
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| | - Wei You
- Department of Chemistry University of North Carolina at Chapel Hill Chapel Hill NC 27599-3290 USA
| |
Collapse
|
38
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
39
|
Jöckle P, Lamparth I, Moszner N, Barner-Kowollik C, Unterreiner AN. Evidence for ultrafast formation of tribenzoylgermyl radicals originating from tetraacylgermane photoinitiators. Polym Chem 2020. [DOI: 10.1039/d0py00344a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report strong evidence for the ultrafast formation of tribenzoylgermyl radicals originating from tetraacylgermane photoinitiators on a ps-time scale. In comparison to previous studies, the result can be related to a high initiation efficiency.
Collapse
Affiliation(s)
- Philipp Jöckle
- Molekulare Physikalische Chemie
- Institut für Physikalische Chemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| | | | | | - Christopher Barner-Kowollik
- Centre for Materials Science
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane
- Australia
| | - Andreas-Neil Unterreiner
- Molekulare Physikalische Chemie
- Institut für Physikalische Chemie
- Karlsruhe Institute of Technology (KIT)
- 76131 Karlsruhe
- Germany
| |
Collapse
|
40
|
De Smit K, Marien YW, Van Geem KM, Van Steenberge PHM, D'hooge DR. Connecting polymer synthesis and chemical recycling on a chain-by-chain basis: a unified matrix-based kinetic Monte Carlo strategy. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00266f] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer synthesis and subsequent depolymerisation/degradation are linked at the molecular level.
Collapse
Affiliation(s)
- Kyann De Smit
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | - Yoshi W. Marien
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | - Kevin M. Van Geem
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
| | | | - Dagmar R. D'hooge
- Laboratory for Chemical Technology (LCT)
- Ghent University
- 9052 Zwijnaarde
- Belgium
- Centre for Textile Science and Engineering (CTSE)
| |
Collapse
|
41
|
Luan B, Li C, Moad G, Muir BW, Zhu J, Patel J, Lim S, Hao X. Kinetic modelling of the reversible addition–fragmentation chain transfer polymerisation of N-isopropylacrylamide. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Thevenin L, Fliedel C, Matyjaszewski K, Poli R. Impact of Catalyzed Radical Termination (CRT) and Reductive Radical Termination (RRT) in Metal‐Mediated Radical Polymerization Processes. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900901] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lucas Thevenin
- CNRS LCC (Laboratoire de Chimie de Coordination) Université de Toulouse UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Christophe Fliedel
- CNRS LCC (Laboratoire de Chimie de Coordination) Université de Toulouse UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue 15213 Pittsburgh PA United States
| | - Rinaldo Poli
- CNRS LCC (Laboratoire de Chimie de Coordination) Université de Toulouse UPS, INPT 205 route de Narbonne, BP 44099 31077 Toulouse Cedex 4 France
| |
Collapse
|
43
|
Ezenwajiaku IH, Chovancová A, Lister KC, Lacík I, Hutchinson RA. Experimental and Modeling Investigation of Radical Homopolymerization of 2‐(Methacryloyloxyethyl) Trimethylammonium Chloride in Aqueous Solution. MACROMOL REACT ENG 2019. [DOI: 10.1002/mren.201900033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ikenna H. Ezenwajiaku
- Department of Chemical EngineeringDupuis Hall, Queen's University Kingston Ontario K7L 3N6 Canada
| | - Anna Chovancová
- Polymer Institute of the Slovak Academy of Sciences Dubravska cesta 9 845 41 Bratislava Slovakia
| | - Kyle C. Lister
- Department of Chemical EngineeringDupuis Hall, Queen's University Kingston Ontario K7L 3N6 Canada
| | - Igor Lacík
- Polymer Institute of the Slovak Academy of Sciences Dubravska cesta 9 845 41 Bratislava Slovakia
| | - Robin A. Hutchinson
- Department of Chemical EngineeringDupuis Hall, Queen's University Kingston Ontario K7L 3N6 Canada
| |
Collapse
|
44
|
Matioszek D, Mazières S, Brusylovets O, Lin CY, Coote ML, Destarac M, Harrisson S. Experimental and Theoretical Comparison of Addition–Fragmentation Pathways of Diseleno- and Dithiocarbamate RAFT Agents. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Dimitri Matioszek
- LHFA, CNRS UMR 5069, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Stéphane Mazières
- Laboratoire des IMRCP, CNRS UMR 5623, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Oleksii Brusylovets
- LHFA, CNRS UMR 5069, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Ching Yeh Lin
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, 2601 Canberra ACT, Australia
| | - Michelle L. Coote
- ARC Centre of Excellence for Electromaterials Science, Research School of Chemistry, Australian National University, 2601 Canberra ACT, Australia
| | - Mathias Destarac
- Laboratoire des IMRCP, CNRS UMR 5623, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Simon Harrisson
- Laboratoire des IMRCP, CNRS UMR 5623, Université de Toulouse, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
45
|
Thevenin L, Fliedel C, Fantin M, Ribelli TG, Matyjaszewski K, Poli R. Reductive Termination of Cyanoisopropyl Radicals by Copper(I) Complexes and Proton Donors: Organometallic Intermediates or Coupled Proton–Electron Transfer? Inorg Chem 2019; 58:6445-6457. [DOI: 10.1021/acs.inorgchem.9b00660] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucas Thevenin
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| | - Christophe Fliedel
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Thomas G. Ribelli
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Rinaldo Poli
- CNRS, LCC (Laboratoire de Chimie de Coordination), Université de Toulouse, UPS, INPT, 205 Route de Narbonne, BP 44099, F-31077, Toulouse Cedex 4, France
- Institut Universitaire de France, 1, rue Descartes, 75231 Paris Cedex 05, France
| |
Collapse
|
46
|
Nonmigratory Poly(vinyl chloride)-block-polycaprolactone Plasticizers and Compatibilizers Prepared by Sequential RAFT and Ring-Opening Polymerization (RAFT-T̵-ROP). Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02146] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Khan M, Guimarães TR, Zhou D, Moad G, Perrier S, Zetterlund PB. Exploitation of Compartmentalization in RAFT Miniemulsion Polymerization to Increase the Degree of Livingness. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29329] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Murtaza Khan
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Thiago R. Guimarães
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Dewen Zhou
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| | - Graeme Moad
- CSIRO Manufacturing Bag 10, Clayton South Victoria 3169 Australia
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Coventry CV4 7AL United Kingdom
- Warwick Medical School University of Warwick Coventry CV4 7AL United Kingdom
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade, Parkville Victoria 3052 Australia
| | - Per B. Zetterlund
- Centre for Advanced Macromolecular Design (CAMD), School of Chemical Engineering The University of New South Wales Sydney New South Wales 2052 Australia
| |
Collapse
|
48
|
Stace SJ, Vanderspikken J, Howard SC, Li G, Muir BW, Fellows CM, Keddie DJ, Moad G. Ab initio RAFT emulsion polymerization mediated by small cationic RAFT agents to form polymers with low molar mass dispersity. Polym Chem 2019. [DOI: 10.1039/c9py00893d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report on low molar mass cationic RAFT agents that provide predictable molar mass and low molar mass dispersities (Đm) in ab initio emulsion polymerization.
Collapse
Affiliation(s)
- Sarah J. Stace
- School of Science and Technology
- University of New England
- Armidale
- Australia
- CSIRO Manufacturing
| | - Jochen Vanderspikken
- CSIRO Manufacturing
- Clayton South
- Australia
- Hasselt University
- Institute for Materials Research (IMO)
| | | | - Guoxin Li
- CSIRO Manufacturing
- Clayton South
- Australia
| | | | | | - Daniel J. Keddie
- School of Science and Technology
- University of New England
- Armidale
- Australia
- School of Biology
| | | |
Collapse
|
49
|
Zhou Y, Zhang Z, Postma A, Moad G. Kinetics and mechanism for thermal and photochemical decomposition of 4,4′-azobis(4-cyanopentanoic acid) in aqueous media. Polym Chem 2019. [DOI: 10.1039/c9py00507b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The two diastereoisomers of 4,4′-azobis(4-cyanopentanoic acid) decompose at different rates in aqueous media. The major products (>50%) are amides produced by trapping the ketenimines formed by C–N coupling.
Collapse
Affiliation(s)
- Yanyan Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Zhengbiao Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- College of Chemistry Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | | | | |
Collapse
|
50
|
Creese O, Adoni P, Su G, Romanyuk A, Fernandez-Trillo P. Poly(Boc-acryloyl hydrazide): the importance of temperature and RAFT agent degradation on its preparation. Polym Chem 2019. [DOI: 10.1039/c9py01222b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Improved conditions for the polymerization of Boc-acryloylhydrazide have been obtained through optimisation of the reaction temperature, achieving this way a compromise between rate of polymerization and rate of degradation of the RAFT agent.
Collapse
Affiliation(s)
- Oliver Creese
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Pavan Adoni
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Guanlong Su
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Andrey Romanyuk
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| | - Paco Fernandez-Trillo
- School of Chemistry
- and Institute of Microbiology and Infection
- University of Birmingham
- B15 2TT Birmingham
- UK
| |
Collapse
|