1
|
Essifi K, Brahmi M, Boussetta A, Charii H, Ait Benhamou A, El Bachiri A, Salhi S, Brahmi R, Moubarik A, Tahani A. Synergistic enhancement of chlorophenols removal using eco-friendly alginate@montmorillonite hybrid bio-capsules: insights from encapsulation and kinetic release studies. J Microencapsul 2024; 41:601-619. [PMID: 39185665 DOI: 10.1080/02652048.2024.2395968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/17/2024] [Indexed: 08/27/2024]
Abstract
This study investigates the synergistic effects of alginate@montmorillonite (Alg@Mt) hybrid microcapsules for enhancing water purification, focusing on improving the encapsulation of hydrophobic contaminants. Alg@Mt microcapsules were prepared through ionotropic gelation. Characterisation was performed using SEM-EDX, FTIR, XRD, and TGA. Encapsulation efficiency (EE), loading capacity (LC), and release behaviour were also examined. Alg@Mt microcapsules effectively removed phenol and its chlorinated derivatives from water. Incorporating Na-Mt improved structural and thermal properties, EE, and LC. Increasing the clay content to 60% (w/w) raised the EE of phenol and its more hydrophobic derivative, 2,4,6-trichlorophenol, from 39.74 ± 3.1% (w/w) and 63.91 ± 2% (w/w) to 60.56 ± 1.6% (w/w) and 82.28 ± 2.3% (w/w), respectively, with more controlled release rates, following Fickian diffusion mechanism. EE increased with phenolic substances hydrophobicity, while LC and release rates were inversely related. This approach is promising for removing hydrophobic contaminants from water.
Collapse
Affiliation(s)
- Kamal Essifi
- Coordination and Analytical Chemistry Laboratory, Faculty of Sciences, University of Chouaïb Doukkali, El Jadida, Morocco
| | - Mohamed Brahmi
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Abdelghani Boussetta
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Hassan Charii
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Anass Ait Benhamou
- Materials Science, Energy and Nanoengineering (MSN) Department, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Ali El Bachiri
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Samira Salhi
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| | - Rachid Brahmi
- Coordination and Analytical Chemistry Laboratory, Faculty of Sciences, University of Chouaïb Doukkali, El Jadida, Morocco
| | - Amine Moubarik
- Chemical Processes and Applied Materials Laboratory, Polydisciplinary Faculty, Sultan Moulay Slimane University, Beni-Mellal, Morocco
| | - Abdesselam Tahani
- Physical Chemistry of Natural Resources and Process Team, Laboratory of Applied Chemistry and Environment, Department of Chemistry, Faculty of Sciences, University Mohamed Premier, Oujda, Morocco
| |
Collapse
|
2
|
Xian W, Zhan YS, Maiti A, Saab AP, Li Y. Filled Elastomers: Mechanistic and Physics-Driven Modeling and Applications as Smart Materials. Polymers (Basel) 2024; 16:1387. [PMID: 38794580 PMCID: PMC11125212 DOI: 10.3390/polym16101387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Elastomers are made of chain-like molecules to form networks that can sustain large deformation. Rubbers are thermosetting elastomers that are obtained from irreversible curing reactions. Curing reactions create permanent bonds between the molecular chains. On the other hand, thermoplastic elastomers do not need curing reactions. Incorporation of appropriated filler particles, as has been practiced for decades, can significantly enhance mechanical properties of elastomers. However, there are fundamental questions about polymer matrix composites (PMCs) that still elude complete understanding. This is because the macroscopic properties of PMCs depend not only on the overall volume fraction (ϕ) of the filler particles, but also on their spatial distribution (i.e., primary, secondary, and tertiary structure). This work aims at reviewing how the mechanical properties of PMCs are related to the microstructure of filler particles and to the interaction between filler particles and polymer matrices. Overall, soft rubbery matrices dictate the elasticity/hyperelasticity of the PMCs while the reinforcement involves polymer-particle interactions that can significantly influence the mechanical properties of the polymer matrix interface. For ϕ values higher than a threshold, percolation of the filler particles can lead to significant reinforcement. While viscoelastic behavior may be attributed to the soft rubbery component, inelastic behaviors like the Mullins and Payne effects are highly correlated to the microstructures of the polymer matrix and the filler particles, as well as that of the polymer-particle interface. Additionally, the incorporation of specific filler particles within intelligently designed polymer systems has been shown to yield a variety of functional and responsive materials, commonly termed smart materials. We review three types of smart PMCs, i.e., magnetoelastic (M-), shape-memory (SM-), and self-healing (SH-) PMCs, and discuss the constitutive models for these smart materials.
Collapse
Affiliation(s)
- Weikang Xian
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - You-Shu Zhan
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| | - Amitesh Maiti
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Andrew P. Saab
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA; (A.M.); (A.P.S.)
| | - Ying Li
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; (W.X.); (Y.-S.Z.)
| |
Collapse
|
3
|
Bi S, Zhang Z, Yang Z, Shen Z, Cai J, Hu J, Jin H, Qiu T, Yu P, Tan B. Protein modified cellulose nanocrystals on reinforcement and self-driven biodegradation of aliphatic polyester. Carbohydr Polym 2023; 322:121312. [PMID: 37839828 DOI: 10.1016/j.carbpol.2023.121312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 07/31/2023] [Accepted: 08/16/2023] [Indexed: 10/17/2023]
Abstract
Due to the highly environment-dependent biodegradation and uncontrolled degradation period, the long-run feasibility and effectiveness of biodegradable polymers are extensively questioned to solve plastics waste accumulation and pollution problems. This work physically incorporated lipase PS from Burkholderia cepacian on cellulose nanocrystals (CNC) and embedded it in polycaprolactone (PCL) to construct stable and controllable interfacial microenvironment between CNC and PCL for the reinforcement and controllable self-driven biodegradation. The physical adsorption of lipase PS on CNC was studied by monitoring the surface charge and particle size. FT-IR spectra confirmed the successful incorporation of lipase PS and CNC. Compared with CNC, protein-modified CNC had a higher maximum thermal decomposition temperature of 345 °C and lower interfacial tension of 11 mN/m with PCL which provided PCL composites with higher nucleation efficiency and tensile elongation of 1086 % at break. In addition, only 0.67 % embedded lipase PS completely hydrolyzed PCL membranes in <140 h. The post-compression molding at 80-100 °C had negligible influence on the lipase activity, which indicated that CNC could protect the lipase from inactivation in polymer extrusion and compression. This work also highlighted protein-modified CNC as a new technology for polymer reinforcement.
Collapse
Affiliation(s)
- Siwen Bi
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, Hubei 430068, China; Hubei Longzhong Laboratory, Xiangyang, Hubei 441000, China.
| | - Zhuang Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zhenzhen Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Zitong Shen
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jiahui Cai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Jintao Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Haoxiang Jin
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Tianhao Qiu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Peng Yu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, Hubei 430068, China; New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan, Hubei 430068, China; Hubei Longzhong Laboratory, Xiangyang, Hubei 441000, China
| | - Bin Tan
- Department of Materials Science and Engineering, Fujian University of Technology, Fuzhou 350011, China
| |
Collapse
|
4
|
Su X, Zhai Y, Jia C, Xu Z, Luo D, Pan Z, Xiang H, Yu S, Zhu L, Zhu M. Improved Antibacterial Properties of Polylactic Acid-Based Nanofibers Loaded with ZnO-Ag Nanoparticles through Pore Engineering. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42920-42929. [PMID: 37650731 DOI: 10.1021/acsami.3c06791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
In the post-epidemic era, bio-based protective fiber materials with active protective functions are of utmost importance, not only to combat the spread of pathogens but also to reduce the environmental impact of petroleum-based protective materials. Here, efficient antibacterial polylactic acid-based (PLA-based) fibers are prepared by solution blow spinning and their pore structures are regulated by controlling the ratio of the solvent components in the spinning solutions. The porous PLA-based fibers exhibit antibacterial efficiencies of over 99% against Escherichia coli and over 98% against Bacillus subtilis, which are significantly higher than that of the nonporous PLA-based fibers. The excellent antibacterial property of the porous PLA-based fibers can be attributed to their high porosity, which allows antibacterial nanoparticles to be released more easily from the fibers, thus effectively killing pathogenic microorganisms. Moreover, pore structure regulation can also enhance the mechanical property of the PLA-based fiber materials. Our approach of regulating the microstructure and properties of the PLA-based fibers through pore engineering can be extended to other polymer fiber materials and is suitable for polymer-based composite systems that require optimal performance through sufficient exposure of doped materials.
Collapse
Affiliation(s)
- Xiaolong Su
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yaling Zhai
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhe Xu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dianfeng Luo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Zhiyi Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liping Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| |
Collapse
|
5
|
Ali MH, Azad MAK, Khan KA, Rahman MO, Chakma U, Kumer A. Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS OMEGA 2023; 8:28133-28142. [PMID: 37576647 PMCID: PMC10413482 DOI: 10.1021/acsomega.3c01261] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 07/06/2023] [Indexed: 08/15/2023]
Abstract
In this cutting-edge research era, silver nanoparticles impose a substantial impact because of their wide applicability in the field of engineering, science, and industry. Regarding the vast applications of silver nanoparticles, in this study, the crystallographic characteristics and nanostructures of silver nanoparticles extracted from natural resources have been studied. First, biosynthetic silver nanoparticles were synthesized using the Pathor Kuchi leaf (PKL) extract as a mediator, and their crystal structures and characteristics were analyzed by UV-visible absorption spectroscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field-emission scanning electron microscopy (FESEM), and energy-dispersive X-ray (EDX) analysis. The average crystallite size of the synthesized silver nanoparticle was determined to be 20.26 nm, and also the lattice strain, intrinsic stress, and dislocation density were measured to be 2.19 × 10-3, 0.08235 GPa, and 3.062045 × 10-3/nm2, respectively. Further, the prepared sample of silver nanoparticles shows four peaks in the X-ray diffraction pattern, which correspond to the (111), (200), (220), and (311) face-centered cubic (FCC) crystalline planes. The outstanding finding of this work was that when the lattice parameters of the precursor were increased, the volume of the material did not considerably change, but the particle size decreased. Second, it was clearly demonstrated that this straightforward method is a clean, cost-effective, environmentally sustainable, nontoxic, and efficient route for the synthesis of silver nanoparticles (Ag NPs) using PKL leaf at ambient temperature, which also satisfies the green chemistry requirements. Finally, this study demonstrates the scope for the production of silver nanoparticles using low-cost natural resources.
Collapse
Affiliation(s)
- Md. Hazrat Ali
- Department
of Electrical and Electronic Engineering, European University of Bangladesh (EUB), 2/4, Gabtoli, Mirpur, Dhaka 1216, Bangladesh
| | - Md. Abul Kalam Azad
- Department
of Civil Engineering, European University
of Bangladesh (EUB), 2/4, Gabtoli, Mirpur, Dhaka 1216, Bangladesh
| | - K. A. Khan
- Department
of Physics, Jagannath University, Dhaka 1100, Bangladesh
| | - Md. Obaidur Rahman
- Department
of Physics, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh
| | - Unesco Chakma
- School
of Electronic Science and Engineering, Southeast
University, Nanjing 210096, P. R. China
- Laboratory
of Computational Research for Drug Design and Material Science, Department
of Chemistry, European University of Bangladesh, Dhaka 1216, Bangladesh
| | - Ajoy Kumer
- Laboratory
of Computational Research for Drug Design and Material Science, Department
of Chemistry, European University of Bangladesh, Dhaka 1216, Bangladesh
| |
Collapse
|
6
|
Lai DS, Osman AF, Adnan SA, Ibrahim I, Ahmad Salimi MN, Jaafar@Mustapha M. Toughening mechanism of thermoplastic starch nano-biocomposite with the hybrid of nanocellulose/nanobentonite. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
|
7
|
Bouyahya C, Bikiaris ND, Zamboulis A, Kyritsis A, Majdoub M, Klonos PA. Crystallization and molecular mobility in renewable semicrystalline copolymers based on polycaprolactone and polyisosorbide. SOFT MATTER 2022; 18:9216-9230. [PMID: 36426754 DOI: 10.1039/d2sm01198k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A series of novel block copolymers based on two biodegradable polymers, poly(ε-caprolactone), PCL, and poly(isosorbide), PIS, with PIS fractions 5, 10, and 25 wt%, are studied herein. The aim is to assess the effects of the amorphous PIS phase on the properties of the semicrystalline PCL (majority), in addition to the synthesis strategy. The latter involved the polymerization of caprolactone onto initial PIS of low molar mass, resulting, thus, in gradually shorter PCL blocks when the starting amount of PIS is increased. The structure-property relationship investigation, with an emphasis on molecular mobility and crystallization, involves the following sum of complementary techniques: differential scanning calorimetry, dielectric spectroscopy, polarized optical microscopy and X-ray diffraction. The molecular mobility map for these PCL/PIS and initial PIS is drawn here for the first time. Despite the high glass transition temperature of PIS (Tg ∼ 51 °C) compared to that of PCL (-66 °C), the Tg of the copolymers barely changes, as it is mainly ruled by crystallinity. The latter seems to be facilitated in the copolymers, in both the amount and the rate. The local molecular mobility of PCL and PCL/PIS consists of faster γPCL relaxation which is unaffected in the copolymers, whereas the slower βPCL process arising from the backbone ester group rotation exhibits a systematic deceleration in the presence of PIS. A connection between such local motions and the corresponding segmental α relaxation, observed previously in other polyesters, is also found to be true here. Apart from that, the dielectric Tg as well as the cooperativity of the polymer chains drop moderately, which indicates spatial confinement between the PCL crystals, whereas correlations with the looser lamellar chain packing within the spherulites are gained. The relaxations of initial PIS, i.e., γPIS, βPIS and αPIS, could not be resolved within the copolymers. Along with other properties, such as ionic conductivity, we conclude to the homogeneity of our systems, with sufficient PCL/PIS distribution.
Collapse
Affiliation(s)
- Chaima Bouyahya
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - Nikolaos D Bikiaris
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Alexandra Zamboulis
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
| | - Apostolos Kyritsis
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| | - Mustapha Majdoub
- Laboratoire des Interfaces et Matériaux Avancés, Université de Monastir, 5000 Monastir, Tunisia.
| | - Panagiotis A Klonos
- Department of Chemistry, Laboratory of Polymer Chemistry and Technology, Aristotle University of Thessaloniki, GR-541 24, Thessaloniki, Greece.
- Department of Physics, National Technical University of Athens, Zografou Campus, 15780, Athens, Greece
| |
Collapse
|
8
|
Liu X, Cui WZ, Yu W. Interfacial Chain Entanglements Induced Melt Memory Effect in Poly(ε-caprolactone)/Silica Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1007/s10118-022-2814-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Altorbaq AS, Alkhodairi H, Mendez NF, Schadler LS, Müller AJ, Kumar SK. Crystallization Kinetics and Mechanical Properties of Miscible Polymer Blend Nanocomposites: Linear versus Grafted Systems. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdullah S. Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Husam Alkhodairi
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Nicholas F. Mendez
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Linda S. Schadler
- Department of Mechanical Engineering, College of Engineering and Mathematical Sciences, University of Vermont, Burlington, Vermont 05405, United States
| | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, Basque Country University UPV/EHU, Paseo Lardizabal 3, 20018, Donostia-San Sebastián, Spain
- Ikerbasque - Basque Science Foundation, Plaza Euskadi 5, 48009 Bilbao, Spain
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
10
|
Taverna ME, Altorbaq AS, Kumar SK, Olmedo-Martínez JL, Busatto CA, Zubitur M, Mugica A, Nicolau VV, Estenoz DA, Müller AJ. Supernucleation Dominates Lignin/Poly(ethylene oxide) Crystallization Kinetics. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- María E. Taverna
- INTEC (UNL-CONICET), Güemes 3450, 3000 Santa Fe, Argentina
- UTN Regional San Francisco, Av. de la Universidad 501, 2400 San Francisco, Córdoba, Argentina
| | - Abdullah S. Altorbaq
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Sanat K. Kumar
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jorge L. Olmedo-Martínez
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
| | | | - Manuela Zubitur
- Chemical and Environmental Engineering Department, Polytechnic School, University of the Basque Country UPV/EHU, 20018 Donostia-San Sebastián, Spain
| | - Agurtzane Mugica
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
| | - Verónica V. Nicolau
- UTN Regional San Francisco, Av. de la Universidad 501, 2400 San Francisco, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, CABA, Argentina
| | | | - Alejandro J. Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
11
|
Wang W, Buzzi S, Fenni SE, Carmeli E, Wang B, Liu G, Müller AJ, Cavallo D. Surface Nucleation of Dispersed Droplets in Double Semicrystalline Immiscible Blends with Different Matrices. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wei Wang
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| | - Simona Buzzi
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| | - Seif Eddine Fenni
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| | - Enrico Carmeli
- Innovation & Technology Borealis Polyolefine GmbH St. Peter‐Straße 25 Linz 4021 Austria
| | - Bao Wang
- Institute of Zhejiang University‐Quzhou 78 Jiuhua Boulevard North Quzhou 324000 China
| | - Guoming Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Engineering Plastics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
| | - Alejandro J. Müller
- Polymat and Department of Polymers and Advanced Materials: Physics Chemistry and Technology Faculty of Chemistry University of the Basque Country UPV/EHU Paseo Manuel de Lardizabal 3 Donostia‐San Sebastián 20018 Spain
- IKERBASQUE Basque Foundation for Science Plaza Euskadi 5 Bilbao 48009 Spain
| | - Dario Cavallo
- Department of Chemistry and Industrial Chemistry University of Genoa Via Dodecaneso 31 Genova 16146 Italy
| |
Collapse
|