1
|
Mohan T, Bračič M, Bračič D, Lackner F, Nagaraj C, Štiglic AD, Kargl R, Kleinschek KS. Protocol for the fabrication of self-standing (nano)cellulose-based 3D scaffolds for tissue engineering. STAR Protoc 2025; 6:103583. [PMID: 39862432 DOI: 10.1016/j.xpro.2024.103583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/20/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
Three-dimensional (3D) and porous scaffolds made from nanocellulosic materials hold significant potential in tissue engineering (TE). Here, we present a protocol for fabricating self-standing (nano)cellulose-based 3D scaffolds designed for in vitro testing of cells from skin and cartilage tissues. We describe steps for preparation of nanocellulose ink, scaffold formation using 3D printing, and freeze-drying. We then detail post-processing procedures to enhance mechanical properties, stability, and biocompatibility. This protocol offers researchers a framework for developing versatile and sustainable biomaterials for regenerative medicine. For complete details on the use and execution of this protocol, please refer to Mohan et al.1 and Štiglic et al.2.
Collapse
Affiliation(s)
- Tamilselvan Mohan
- Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova Ulica 17, 2000 Maribor, Slovenia.
| | - Matej Bračič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova Ulica 17, 2000 Maribor, Slovenia.
| | - Doris Bračič
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Florian Lackner
- Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; Members of the European Polysaccharide Network of Excellence (EPNOE)
| | - Chandran Nagaraj
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andreja Dobaj Štiglic
- University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova Ulica 17, 2000 Maribor, Slovenia
| | - Rupert Kargl
- Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; University of Maribor, Faculty of Mechanical Engineering, Laboratory for Characterization and Processing of Polymers, Smetanova Ulica 17, 2000 Maribor, Slovenia; Members of the European Polysaccharide Network of Excellence (EPNOE)
| | - Karin Stana Kleinschek
- Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia; Members of the European Polysaccharide Network of Excellence (EPNOE)
| |
Collapse
|
2
|
Putri KNA, Intasanta V, Hoven VP. Current significance and future perspective of 3D-printed bio-based polymers for applications in energy conversion and storage system. Heliyon 2024; 10:e25873. [PMID: 38390075 PMCID: PMC10881347 DOI: 10.1016/j.heliyon.2024.e25873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/24/2024] Open
Abstract
The increasing global population has led to a surge in energy demand and the production of environmentally harmful products, highlighting the urgent need for renewable and clean energy sources. In this context, sustainable and eco-friendly energy production strategies have been explored to mitigate the adverse effects of fossil fuel consumption to the environment. Additionally, efficient energy storage devices with a long lifespan are also crucial. Tailoring the components of energy conversion and storage devices can improve overall performance. Three-dimensional (3D) printing provides the flexibility to create and optimize geometrical structure in order to obtain preferable features to elevate energy conversion yield and storage capacitance. It also serves the potential for rapid and cost-efficient manufacturing. Besides that, bio-based polymers with potential mechanical and rheological properties have been exploited as material feedstocks for 3D printing. The use of these polymers promoted carbon neutrality and environmentally benign processes. In this perspective, this review provides an overview of various 3D printing techniques and processing parameters for bio-based polymers applicable for energy-relevant applications. It also explores the advances and current significance on the integration of 3D-printed bio-based polymers in several energy conversion and storage components from the recently published studies. Finally, the future perspective is elaborated for the development of bio-based polymers via 3D printing techniques as powerful tools for clean energy supplies towards the sustainable development goals (SDGs) with respect to environmental protection and green energy conversion.
Collapse
Affiliation(s)
- Khoiria Nur Atika Putri
- Program in Petrochemistry and Polymer Science, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Varol Intasanta
- Nanohybrids and Coating Research Group, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Voravee P Hoven
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Materials and Biointerfaces, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
3
|
Ebers LS, Laborie MP. Direct Ink Writing of Fully Bio-Based Liquid Crystalline Lignin/Hydroxypropyl Cellulose Aqueous Inks: Optimization of Formulations and Printing Parameters. ACS APPLIED BIO MATERIALS 2020; 3:6897-6907. [DOI: 10.1021/acsabm.0c00800] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lisa-Sophie Ebers
- Chair of Forest Biomaterials, University of Freiburg, Werthmannstraße 6, Freiburg im Breisgau 79085, Germany
- Freiburg Materials Research Center, Stefan-Meier-Straße 21, Freiburg im Breisgau 79104, Germany
| | - Marie-Pierre Laborie
- Chair of Forest Biomaterials, University of Freiburg, Werthmannstraße 6, Freiburg im Breisgau 79085, Germany
- Freiburg Materials Research Center, Stefan-Meier-Straße 21, Freiburg im Breisgau 79104, Germany
| |
Collapse
|
4
|
Mohan D, Teong ZK, Bakir AN, Sajab MS, Kaco H. Extending Cellulose-Based Polymers Application in Additive Manufacturing Technology: A Review of Recent Approaches. Polymers (Basel) 2020; 12:E1876. [PMID: 32825377 PMCID: PMC7563372 DOI: 10.3390/polym12091876] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/14/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023] Open
Abstract
The materials for additive manufacturing (AM) technology have grown substantially over the last few years to fulfill industrial needs. Despite that, the use of bio-based composites for improved mechanical properties and biodegradation is still not fully explored. This limits the universal expansion of AM-fabricated products due to the incompatibility of the products made from petroleum-derived resources. The development of naturally-derived polymers for AM materials is promising with the increasing number of studies in recent years owing to their biodegradation and biocompatibility. Cellulose is the most abundant biopolymer that possesses many favorable properties to be incorporated into AM materials, which have been continuously focused on in recent years. This critical review discusses the development of AM technologies and materials, cellulose-based polymers, cellulose-based three-dimensional (3D) printing filaments, liquid deposition modeling of cellulose, and four-dimensional (4D) printing of cellulose-based materials. Cellulose-based AM material applications and the limitations with future developments are also reviewed.
Collapse
Affiliation(s)
- Denesh Mohan
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Zee Khai Teong
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Afifah Nabilah Bakir
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Mohd Shaiful Sajab
- Research Center for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (D.M.); (Z.K.T.); (A.N.B.)
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Hatika Kaco
- Kolej GENIUS Insan, Universiti Sains Islam Malaysia, Bandar Baru Nilai, Nilai 71800, Negeri Sembilan, Malaysia;
| |
Collapse
|