1
|
Kim SM. Oral galvanism related to dental implants. Maxillofac Plast Reconstr Surg 2023; 45:36. [PMID: 37801180 PMCID: PMC10558418 DOI: 10.1186/s40902-023-00403-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND A range of different chemical interactions can generate an unexpected electronic current in a process called galvanism. Oral galvanism (OG) can also be generated by different chemical actions from diverse intraoral rehabilitated metals, including gold, copper, mercury, titanium, and titanium alloy. The main aim of this manuscript is to review OG, particularly focusing on titanium implants and related metallic materials. We searched the MEDLINE (PubMed), Embase, Scopus, and Google Scholar databases for relevant literature published through December 2019. The keywords included "galvanic current", "galvanism", "galvanic corrosion", "oral galvanism", combined with "oral", "oral cavity", "implant", and "saliva." RESULTS Out of 343 articles, 126 articles that met the inclusion criteria were reviewed. We examined and summarized research on OG through a division into four categories: definition and symptoms, diagnosis with testing methods, galvanic corrosion, and oral precancerous lesions with OG. CONCLUSIONS Patients with OG have high oral energy and current, and although this phenomenon may be due to the patient's mental illness, OG due to amalgam or mercury occurs. It is evident that the difference in electron potential caused by different elemental components such as titanium alloy and pure titanium, which are essential for manufacturing the implant fixture and the abutment, and chrome and nickel, which are essential for manufacturing the upper crown, causes OG. Since the oral cavity is equipped with an environment in which electric current can be transmitted easily due to saliva, it is imperative that clinicians review the systemic and local effects of salivation.
Collapse
Affiliation(s)
- Soung Min Kim
- Department of Oral and Maxillofacial Surgery, Dental Research Institute, School of Dentistry, Seoul National University, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
- Oral and Maxillofacial Microvascular Reconstruction LAB, Ghana Health Service, Brong Ahafo Regional Hospital, P.O. Box 27, Sunyani, Brong Ahafo, Ghana.
| |
Collapse
|
2
|
Bio-Tribocorrosion of Titanium Dental Implants and Its Toxicological Implications: A Scoping Review. ScientificWorldJournal 2022; 2022:4498613. [PMID: 36312451 PMCID: PMC9616655 DOI: 10.1155/2022/4498613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/30/2022] [Indexed: 11/18/2022] Open
Abstract
Bio-tribocorrosion is a phenomenon that combines the essentials of tribology (friction, wear, and lubrication) and corrosion with microbiological processes. Lately, it has gained attention in implant dentistry because dental implants are exposed to wear, friction, and biofilm formation in the corrosive oral environment. They may degrade upon exposure to various microbial, biochemical, and electrochemical factors in the oral cavity. The mechanical movement of the implant components produces friction and wear that facilitates the release of metal ions, promoting adverse oro-systemic reactions. This review describes the bio-tribocorrosion of the titanium (Ti) dental implants in the oral cavity and its toxicological implications. The original research related to the bio-tribo or tribocorrosion of the dental implants was searched in electronic databases like Medline (Pubmed), Embase, Scopus, and Web of Science. About 34 studies included in the review showed that factors like the type of Ti, oral biofilm, acidic pH, fluorides, and micromovements during mastication promote bio-tribocorrosion of the Ti dental implants. Among the various grades of Ti, grade V, i.e., Ti6Al4V alloy, is most susceptible to tribocorrosion. Oral pathogens like Streptococcus mutans and Porphyromonas gingivalis produce acids and lipopolysaccharides (LPS) that cause pitting corrosion and degrade the TiO2. The low pH and high fluoride concentration in saliva hinder passive film formation and promote metal corrosion. The released metal ions promote inflammatory reactions and bone destruction in the surrounding tissues resulting in peri-implantitis, allergies, and hyper-sensitivity reactions. However, further validation of the role of bio-tribocorrosion on the durability of the Ti dental implants and Ti toxicity is warranted through clinical trials.
Collapse
|
3
|
Manthe J, Cheng KY, Bijukumar D, Barba M, Pourzal R, Neto M, Mathew MT. Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion. J Mech Behav Biomed Mater 2022; 134:105402. [PMID: 36041275 PMCID: PMC10507884 DOI: 10.1016/j.jmbbm.2022.105402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloy is one of the most used metals in total hip replacement (THR) due to the alloy's superior corrosion qualities and biocompatibility. Over time these prostheses may undergo wear and corrosion processes in a synergistic process known as tribocorrosion. Implant retrieval studies have shown that damage patterns on THR modular junction surfaces indicating specifically in vivo fretting-corrosion to take place. To date, there have been no studies on the fretting-corrosion behaviors of CoCrMo alloy under the consideration of specific microstructural features. A custom-built flat-on-flat fretting-corrosion setup was utilized to test the synergistic tribocorrosion behavior of fretting-corrosion. The difference in microstructure was generated through the cutting orientations of the transverse and the longitudinal direction of the bar stock material, where the longitudinal cut exhibits a characteristic banded microstructure (banded group) and the transverse cut a homogenous microstructure (unbanded group). A three-electrode system was employed to monitor the induced currents. Two different types of electrolytes were used in the current study: 1. Bovine calf serum (BCS-30 g/L protein) (normal conditions) 2. BCS with Lipopolysaccharide (LPS, 0.15 μg/ml) (simulated infectious conditions). In the free potential mode, banded samples showed an increased potential compared to the unbanded samples. In potentiostatic conditions, the banded group also exhibited a higher induced current in both electrolyte environments, indicating more corrosion loss. Both Nyquist and Bode plots showed both orientations of metal becoming more corrosion resistant post-fretting when compared to pre-fretting data. The longitudinal group at OCP demonstrated a unique shape of the fretting-loop, which might be related to tribochemical reactions. Based on the mechanical, electrochemical, and surface characterization data, the transverse group (unbanded) microstructures demonstrates a higher resistance to fretting-corrosion damage.
Collapse
Affiliation(s)
- Jacob Manthe
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Kai Yuan Cheng
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Divya Bijukumar
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | | - Robin Pourzal
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mozart Neto
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mathew T Mathew
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA; Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
4
|
Abstract
This review aims to discuss the advantages and disadvantages of zirconia implants compared with titanium implants. Moreover, it intends to review the relevant available long-term literature of these two materials regarding osteointegration, soft-tissue, microbiota, and peri-implantitis, focusing on clinical results. Briefly, titanium implants are a reliable alternative for missing teeth; however, they are not incapable of failure. In an attempt to provide an alternative implant material, implants made from ceramic-derivate products were developed. Owing to its optimal osseointegration competence, biocompatibility, and esthetic proprieties, zirconium dioxide (ZrO2), also known as zirconia, has gained popularity among researchers and clinicians, being a metal-free alternative for titanium implants with its main use in the anterior esthetic zones. This type of implant may present similar osseointegration as those noted on titanium implants with a greater soft-tissue response. Furthermore, this material does not show corrosion as its titanium analog, and it is less susceptible to bacterial adhesion. Lastly, even presenting a similar inflammatory response to titanium, zirconia implants offer less biofilm formation, suggesting less susceptibility to peri-implantitis. However, it is a relatively new material that has been commercially available for a decade; consequently, the literature still lacks studies with long follow-up periods.
Collapse
|
5
|
Pinto LS, Nakane Matsumoto MA, Romualdo PC, Romano FL, da Silva RAB, da Silva LAB, de Queiroz AM, Nelson-Filho P. Esthetic elastomeric ligatures: Quantification of bacterial endotoxin in vitro and in vivo. Am J Orthod Dentofacial Orthop 2021; 159:660-665. [PMID: 33714568 DOI: 10.1016/j.ajodo.2020.02.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 12/01/2019] [Accepted: 02/01/2020] [Indexed: 11/16/2022]
Abstract
INTRODUCTION The objective of this study was to evaluate in vitro and in vivo bacterial endotoxin (LPS) adhesion in polyurethane and silicone esthetic elastomeric orthodontic ligatures. The null hypotheses tested were: (1) there is no LPS adhesion in esthetic elastomeric orthodontic ligatures; and (2) there is no difference in the LPS adhesion between different brands of these ligatures. METHODS For the in vitro study, 4 types of esthetic elastomeric ligatures were used (Sani-Ties and Sili-Ties [Dentsply GAC, Islandia, NY;] and Mini Single Case Ligature Stick and Synergy low-friction ligatures [Rocky Mountain Orthodontics, Denver, Colo]), contaminated or not with endotoxin solution. Replicas of twisted wire and cast stainless steel ligatures were used as control. For the in vivo study, 10 male and 10 female patients, aged 15-30 years, received the same 4 types of ligatures, 1 of each inserted in the maxillary and mandibular canines, randomly. Twenty-one days later, the ligatures were removed, and endotoxin quantification was performed using the Limulus amebocyte lysate test. Data were analyzed (α = 0.05) using the Kruskal-Wallis test and Dunn's posttest or analysis of variance and Tukey's posttest. RESULTS GAC silicone group had the lowest median contamination (1.15 endotoxin units/mL; P <0.0001) in vitro. In the in vivo study, the GAC silicone group had the lowest mean contamination (0.577 endotoxin units/mL; P <0.001). In both studies, the other groups did not present a significant difference when compared with each other (P >0.05). CONCLUSIONS LPS exhibited an affinity for all the tested polyurethane and silicone elastomeric ligatures. GAC silicone ligatures presented with lower amounts of LPS attached to their surfaces. Thus, both null hypotheses were rejected.
Collapse
Affiliation(s)
- Letícia Sgarbi Pinto
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Mírian Aiko Nakane Matsumoto
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Priscilla Coutinho Romualdo
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fábio Lourenço Romano
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Alexandra Mussolino de Queiroz
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Clinic, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
6
|
Romualdo PC, Guerra TR, Romano FL, Silva RABD, Brandão IT, Silva CL, Silva LABD, Nelson-Filho P. Bacterial endotoxin adhesion to different types of orthodontic adhesives. J Appl Oral Sci 2017; 25:436-441. [PMID: 28877283 PMCID: PMC5595117 DOI: 10.1590/1678-7757-2016-0434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/12/2017] [Indexed: 11/21/2022] Open
Abstract
Objective The aim of this study was to assess whether LPS adheres to orthodontic adhesive systems, comparing two commercial brands. Material and Methods Forty specimens were fabricated from Transbond XT and Light Bond composite and bonding agent components (n=10/component), then contaminated by immersion in a bacterial endotoxin solution. Contaminated and non-contaminated acrylic resin samples were used as positive and negative control groups, respectively. LPS quantification was performed by the Limulus Amebocyte Lysate QCL-1000™ test. Data obtained were scored and subjected to the Chi-square test using a significance level of 5%. Results There was endotoxin adhesion to all materials (p<0.05). No statistically significant difference was found between composites/bonding agents and acrylic resin (p>0.05). There was no significant difference (p>0.05) among commercial brands. Affinity of endotoxin was significantly greater for the bonding agents (p=0.0025). Conclusions LPS adhered to both orthodontic adhesive systems. Regardless of the brand, the endotoxin had higher affinity for the bonding agents than for the composites. There is no previous study assessing the affinity of LPS for orthodontic adhesive systems. This study revealed that LPS adheres to orthodontic adhesive systems. Therefore, additional care is recommended to orthodontic applications of these materials.
Collapse
Affiliation(s)
- Priscilla Coutinho Romualdo
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, SP, Brasil
| | - Thaís Rodrigues Guerra
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, SP, Brasil
| | - Fábio Lourenço Romano
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, SP, Brasil
| | - Raquel Assed Bezerra da Silva
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, SP, Brasil
| | - Izaíra Tincani Brandão
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Ribeirão Preto, SP, Brasil
| | - Célio Lopes Silva
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Departamento de Bioquímica e Imunologia, Ribeirão Preto, SP, Brasil
| | - Lea Assed Bezerra da Silva
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, SP, Brasil
| | - Paulo Nelson-Filho
- Universidade de São Paulo, Faculdade de Odontologia de Ribeirão Preto, Departamento de Clínica Infantil, Ribeirão Preto, SP, Brasil
| |
Collapse
|
7
|
Initial investigation of the corrosion stability of craniofacial implants. J Prosthet Dent 2017; 119:185-192. [PMID: 28533010 DOI: 10.1016/j.prosdent.2017.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/15/2017] [Accepted: 02/15/2017] [Indexed: 11/23/2022]
Abstract
STATEMENT OF PROBLEM Although craniofacial implants have been used for retention of facial prostheses, failures are common. Titanium undergoes corrosion in the oral cavity, but the corrosion of craniofacial implants requires evaluation. PURPOSE The purpose of this in vitro study was to investigate the corrosion stability of commercially pure titanium (CP Ti) exposed to simulated human perspiration at 2 different pH levels (5.5 and 8). MATERIAL AND METHODS Fifteen titanium disks were divided into 3 groups (n=5 per group). The control group was subjected to simulated body fluid (SBF) (control). Disks from the 2 experimental groups were immersed in simulated alkaline perspiration (SAKP) and simulated acidic perspiration (SACP). Electrochemical tests, including open circuit potential (3600 seconds), electrochemical impedance spectroscopy, and potentiodynamic tests were performed according to the standardized method of 3-cell electrodes. Data were analyzed by 1-way ANOVA and the Tukey honestly significant difference tests (α=.05). RESULTS Simulated human perspiration reduced the corrosion stability of CP Ti (P<.05). The SBF group presented the lowest capacitance values (P<.05). SAKP and SACP groups showed increased values of capacitance and showed no statistically significant differences (P>.05) from each other. The increase in capacitance suggests that the acceleration of the ionic exchanges between the CP Ti and the electrolyte leads to a lower corrosion resistance. SAKP reduced the oxide layer resistance of CP Ti (P<.05), and an increased corrosion rate was noted in both simulated human perspiration groups. CONCLUSIONS Craniofacial implants can corrode when in contact with simulated human perspiration, whereas alkaline perspiration shows a more deleterious effect. Perspiration induces a more corrosive effect than simulated body fluid.
Collapse
|
8
|
Fage SW, Muris J, Jakobsen SS, Thyssen JP. Titanium: a review on exposure, release, penetration, allergy, epidemiology, and clinical reactivity. Contact Dermatitis 2016; 74:323-45. [PMID: 27027398 DOI: 10.1111/cod.12565] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 02/07/2016] [Accepted: 02/08/2016] [Indexed: 11/29/2022]
Abstract
Exposure to titanium (Ti) from implants and from personal care products as nanoparticles (NPs) is common. This article reviews exposure sources, ion release, skin penetration, allergenic effects, and diagnostic possibilities. We conclude that human exposure to Ti mainly derives from dental and medical implants, personal care products, and foods. Despite being considered to be highly biocompatible relative to other metals, Ti is released in the presence of biological fluids and tissue, especially under certain circumstances, which seem to be more likely with regard to dental implants. Although most of the studies reviewed have important limitations, Ti seems not to penetrate a competent skin barrier, either as pure Ti, alloy, or as Ti oxide NPs. However, there are some indications of Ti penetration through the oral mucosa. We conclude that patch testing with the available Ti preparations for detection of type IV hypersensitivity is currently inadequate for Ti. Although several other methods for contact allergy detection have been suggested, including lymphocyte stimulation tests, none has yet been generally accepted, and the diagnosis of Ti allergy is therefore still based primarily on clinical evaluation. Reports on clinical allergy and adverse events have rarely been published. Whether this is because of unawareness of possible adverse reactions to this specific metal, difficulties in detection methods, or the metal actually being relatively safe to use, is still unresolved.
Collapse
Affiliation(s)
- Simon W Fage
- Department of Dermato-Venereology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Joris Muris
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, 1081 LA, Amsterdam, The Netherlands
| | - Stig S Jakobsen
- Department of Orthopaedic Surgery, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Jacob P Thyssen
- National Allergy Research Centre, Department of Dermato-Allergology, Copenhagen University Hospital Herlev-Gentofte, 2900 Hellerup, Denmark
| |
Collapse
|
9
|
Production of a biofunctional titanium surface using plasma electrolytic oxidation and glow-discharge plasma for biomedical applications. Biointerphases 2016; 11:011013. [PMID: 26984234 DOI: 10.1116/1.4944061] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
In this study, the authors tested the hypotheses that plasma electrolytic oxidation (PEO) and glow-discharge plasma (GDP) would improve the electrochemical, physical, chemical, and mechanical properties of commercially pure titanium (cpTi), and that blood protein adsorption on plasma-treated surfaces would increase. Machined and sandblasted surfaces were used as controls. Standard electrochemical tests were conducted in artificial saliva (pHs of 3.0, 6.5, and 9.0) and simulated body fluid. Surfaces were characterized by scanning electron microscopy, energy-dispersive spectroscopy, x-ray photoelectron spectroscopy, atomic force microscopy, x-ray diffraction, profilometry, Vickers microhardness, and surface energy. For biological assay, the adsorption of blood serum proteins (i.e., albumin, fibrinogen, and fibronectin) was tested. Higher values of polarization resistance and lower values of capacitance were noted for the PEO and GDP groups (p < 0.05). Acidic artificial saliva reduced the corrosion resistance of cpTi (p < 0.05). PEO and GDP treatments improved the surface properties by enrichment of the surface chemistry with bioactive elements and increased surface energy. PEO produced a porous oxide layer (5-μm thickness), while GDP created a very thin oxide layer (0.76-μm thickness). For the PEO group, the authors noted rutile and anatase crystalline structures that may be responsible for the corrosion barrier improvement and increased microhardness values. Plasma treatments were able to enhance the surface properties and electrochemical stability of titanium, while increasing protein adsorption levels.
Collapse
|
10
|
Yu W, Qian C, Weng W, Zhang S. Effects of lipopolysaccharides on the corrosion behavior of Ni-Cr and Co-Cr alloys. J Prosthet Dent 2016; 116:286-91. [PMID: 26973298 DOI: 10.1016/j.prosdent.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 01/02/2016] [Accepted: 01/04/2016] [Indexed: 10/22/2022]
Abstract
STATEMENT OF PROBLEM Lipopolysaccharides (LPS) are constituents of gingival crevicular fluid and may affect the base metal alloys used in metal ceramic crowns. The role of LPS in base metal alloys is currently unknown. PURPOSE The purpose of this in vitro study was to evaluate the effects of gram-negative bacterial LPS on the electrochemical behavior of Ni-Cr and Co-Cr alloys. MATERIAL AND METHODS Alloy specimens were divided into 4 groups according to Escherichia coli LPS concentration (0, 0.15, 15, and 150 μg/mL) in acidic saliva (pH 5). Open circuit potential (OCP) and potentiodynamic polarization behavior were examined using a computer-controlled potentiostat. Metal ions released from the 2 alloys were measured by immersion in LPS-free solution and 150 μg/mL LPS solution and analyzed by inductively coupled plasma atomic emission spectrometry (ICP-AES). Data were evaluated using 1-way ANOVA (α=.05). RESULTS Compared with control groups, medium LPS concentration (15 μg/mL) accelerated Ni-Cr alloy corrosion (P<.05), whereas high LPS concentration (150 μg/mL) accelerated Co-Cr alloy corrosion (P<.05), as determined by OCP, corrosion current density, and polarization resistance parameters. After immersion in high LPS concentrations (150 μg/mL), a slight increase in Ni ion release (P >.05) was observed for the Ni-Cr alloy, while a more significant Co ion release (P<.05) was observed for the Co-Cr alloy. CONCLUSIONS LPS negatively affected the electrochemical behavior of both the Ni-Cr and Co-Cr alloys.
Collapse
Affiliation(s)
- Weiqiang Yu
- Physician-in-charge, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chao Qian
- Doctoral candidate, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Weimin Weng
- Associate Professor, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China.
| | - Songmei Zhang
- Physician-in-charge, Department of Prosthodontics, School of Stomatology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
11
|
Beline T, Garcia CS, Ogawa ES, Marques ISV, Matos AO, Sukotjo C, Mathew MT, Mesquita MF, Consani RX, Barão VAR. Surface treatment influences electrochemical stability of cpTi exposed to mouthwashes. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:1079-1088. [PMID: 26652467 DOI: 10.1016/j.msec.2015.11.045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 08/10/2015] [Accepted: 11/16/2015] [Indexed: 11/26/2022]
Abstract
The role of surface treatment on the electrochemical behavior of commercially pure titanium (cpTi) exposed to mouthwashes was tested. Seventy-five disks were divided into 15 groups according to surface treatment (machined, sand blasted with Al2O3, and acid etched) and electrolyte solution (artificial saliva — control, 0.12% chlorhexidine digluconate, 0.05% cetylpyridinium chloride, 0.2% sodium fluoride, and 1.5% hydrogen peroxide) (n = 5). Open-circuit-potential and electrochemical impedance spectroscopy were conducted at baseline and after 7 and 14 days of immersion in each solution. Potentiodynamic test and total weight loss of disks were performed after 14 days of immersion. Scanning electron microscopy, energy dispersive spectroscopy, white light interferometry and profilometry were conducted for surface characterization before and after the electrochemical tests. Sandblasting promoted the lowest polarization resistance (Rp) (P b .0001) and the highest capacitance (CPE) (P b .006), corrosion current density (Icorr) and corrosion rate (P b .0001). In contrast, acid etching increased Rp and reduced CPE, independent to the mouthwash; while hydrogen peroxide reduced Rp (P b .008) and increased Icorr and corrosion rate (P b .0001). The highest CPE values were found for hydrogen peroxide and 0.2% sodium fluoride. Immersion for longer period improved the electrochemical stability of cpTi (P b .05). In conclusion, acid etching enhanced the electrochemical stability of cpTi. Hydrogen peroxide and sodium fluoride reduced the resistance to corrosion of cpTi, independent to the surface treatment. Chlorhexidine gluconate and cetylpyridinium chloride did not alter the corrosive behavior of cpTi.
Collapse
Affiliation(s)
- Thamara Beline
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Camila S Garcia
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Erika S Ogawa
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Isabella S V Marques
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Adaias O Matos
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago, College of Dentistry, 801 S Paulina, Chicago, IL 60612, USA; IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA
| | - Mathew T Mathew
- IBTN - Institute of Biomaterials, Tribocorrosion and Nanomedicine, USA; Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison, Chicago, IL 60612, USA
| | - Marcelo F Mesquita
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Rafael X Consani
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, University of Campinas (UNICAMP), Av Limeira, 901, Piracicaba, São Paulo 13414-903, Brazil; IBTN/Br - Institute of Biomaterials, Tribocorrosion and Nanomedicine, Brazilian Branch, Brazil.
| |
Collapse
|
12
|
Xing H, Taguchi Y, Komasa S, Yamawaki I, Sekino T, Umeda M, Okazaki J. Effect of Porphyromonas gingivalis Lipopolysaccharide on Bone Marrow Mesenchymal Stem Cell Osteogenesis on a Titanium Nanosurface. J Periodontol 2015; 86:448-55. [DOI: 10.1902/jop.2014.140386] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Do genetic susceptibility, Toll-like receptors, and pathogen-associated molecular patterns modulate the effects of wear? Clin Orthop Relat Res 2014; 472:3709-17. [PMID: 25034980 PMCID: PMC4397765 DOI: 10.1007/s11999-014-3786-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Overwhelming evidence supports the concept that wear particles are the primary initiator of aseptic loosening of orthopaedic implants. It is likely, however, that other factors modulate the biologic response to wear particles. This review focuses on three potential other factors: genetic susceptibility, Toll-like receptors (TLRs), and bacterial pathogen-associated molecular patterns (PAMPs). WHERE ARE WE NOW?: Considerable evidence is emerging that both genetic susceptibility and TLR activation are important factors that modulate the biologic response to wear particles, but it remains controversial whether bacterial PAMPs also do so. WHERE DO WE NEED TO GO?: Detailed understanding of the roles of these other factors may lead to identification of novel therapeutic targets for patients with aseptic loosening. HOW DO WE GET THERE?: Highest priority should be given to polymorphism replication studies with large numbers of patients and studies to replicate the reported correlation between bacterial biofilms and the severity of aseptic loosening.
Collapse
|
14
|
Faverani LP, Assunção WG, de Carvalho PSP, Yuan JCC, Sukotjo C, Mathew MT, Barao VA. Effects of dextrose and lipopolysaccharide on the corrosion behavior of a Ti-6Al-4V alloy with a smooth surface or treated with double-acid-etching. PLoS One 2014; 9:e93377. [PMID: 24671257 PMCID: PMC3966875 DOI: 10.1371/journal.pone.0093377] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 03/03/2014] [Indexed: 12/28/2022] Open
Abstract
Diabetes and infections are associated with a high risk of implant failure. However, the effects of such conditions on the electrochemical stability of titanium materials remain unclear. This study evaluated the corrosion behavior of a Ti-6Al-4V alloy, with a smooth surface or conditioned by double-acid-etching, in simulated body fluid with different concentrations of dextrose and lipopolysaccharide. For the electrochemical assay, the open-circuit-potential, electrochemical impedance spectroscopy, and potentiodynamic test were used. The disc surfaces were characterized by scanning electron microscopy and atomic force microscopy. Their surface roughness and Vickers microhardness were also tested. The quantitative data were analyzed by Pearson's correlation and independent t-tests (α = 0.05). In the corrosion parameters, there was a strong lipopolysaccharide correlation with the Ipass (passivation current density), Cdl (double-layer capacitance), and Rp (polarization resistance) values (p<0.05) for the Ti-6Al-4V alloy with surface treatment by double-acid-etching. The combination of dextrose and lipopolysaccharide was correlated with the Icorr (corrosion current density) and Ipass (p<0.05). The acid-treated groups showed a significant increase in Cdl values and reduced Rp values (p<0.05, t-test). According to the topography, there was an increase in surface roughness (R2 = 0.726, p<0.0001 for the smooth surface; R2 = 0.405, p = 0.036 for the double-acid-etching-treated surface). The microhardness of the smooth Ti-6Al-4V alloy decreased (p<0.05) and that of the treated Ti-6Al-4V alloy increased (p<0.0001). Atomic force microscopy showed changes in the microstructure of the Ti-6Al-4V alloy by increasing the surface thickness mainly in the group associated with dextrose and lipopolysaccharide. The combination of dextrose and lipopolysaccharide affected the corrosion behavior of the Ti-6Al-4V alloy surface treated with double-acid-etching. However, no dose-response corrosion behavior could be observed. These results suggest a greater susceptibility to corrosion of titanium implants in diabetic patients with associated infections.
Collapse
Affiliation(s)
- Leonardo P. Faverani
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
- Department of Surgery and Integrated Clinic, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Wirley G. Assunção
- Department of Dental Materials and Prosthodontics, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Paulo Sérgio P. de Carvalho
- Department of Surgery and Integrated Clinic, Aracatuba Dental School, Universidade Estadual Paulista (UNESP), Aracatuba, São Paulo, Brazil
| | - Judy Chia-Chun Yuan
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
| | - Cortino Sukotjo
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
| | - Mathew T. Mathew
- Department of Restorative Dentistry, University of Illinois at Chicago–College of Dentistry, Chicago, Illinois, United States of America
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, Illinois, United States of America
| | - Valentim A. Barao
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
15
|
Barão VAR, Yoon CJ, Mathew MT, Yuan JCC, Wu CD, Sukotjo C. Attachment of Porphyromonas gingivalis to corroded commercially pure titanium and titanium-aluminum-vanadium alloy. J Periodontol 2014; 85:1275-82. [PMID: 24444400 DOI: 10.1902/jop.2014.130595] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Titanium dental material can become corroded because of electrochemical interaction in the oral environment. The corrosion process may result in surface modification. It was hypothesized that a titanium surface modified by corrosion may enhance the attachment of periodontal pathogens. This study evaluates the effects of corroded titanium surfaces on the attachment of Porphyromonas gingivalis. METHODS Commercially pure titanium (cp-Ti) and titanium-aluminum-vanadium alloy (Ti-6Al-4V) disks were used. Disks were anodically polarized in a standard three-electrode setting in a simulated oral environment with artificial saliva at pH levels of 3.0, 6.5, or 9.0. Non-corroded disks were used as controls. Surface roughness was measured before and after corrosion. Disks were inoculated with P. gingivalis and incubated anaerobically at 37°C. After 6 hours, the disks with attached P. gingivalis were stained with crystal violet, and attachment was expressed based on dye absorption at optical density of 550 nm. All assays were performed independently three times in triplicate. Data were analyzed by two-way analysis of variance, the Tukey honestly significant difference test, t test, and Pearson's correlation test (α = 0.05). RESULTS Both cp-Ti and Ti-6Al-4V alloy-corroded disks promoted significantly more bacterial attachment (11.02% and 41.78%, respectively; P <0.0001) than did the non-corroded controls. Significantly more (11.8%) P. gingivalis attached to the cp-Ti disks than to the Ti-6Al-4V alloy disks (P <0.05). No significant difference in P. gingivalis attachment was noted among the corroded groups for both cp-Ti and Ti-6Al-4V alloy (P >0.05). There was no significant correlation between surface roughness and P. gingivalis attachment. CONCLUSION A higher degree of corrosion on the titanium surface may promote increased bacterial attachment by oral pathogens.
Collapse
Affiliation(s)
- Valentim A R Barão
- Department of Prosthodontics and Periodontology, University of Campinas, Piracicaba Dental School, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|