1
|
Alarcón-Sánchez MA, Castro-Alarcón N, Sandoval-Guevara D, Vázquez-Villamar M, Fernández-Acosta K, Méndez-Gómez MY, Parra-Rojas I, Romero-Castro NS. Analysis of subgingival microbiota and IL-1β, TNF-α and CX3CL1 levels in gingival crevicular fluid of fixed dental prostheses. Dent Mater J 2024; 43:235-246. [PMID: 38417861 DOI: 10.4012/dmj.2023-136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Prosthetic biomaterials can affect the composition of the subgingival microbiota and consequently the production of proinflammatory cytokines, causing damage to the periodontium. A total of 40 patients were divided into two groups: 20 with monolithic zirconia (MZ) prostheses and 20 with porcelain fused to metal (PFM) with nickel-chromium (Ni-Cr) alloy prostheses. Subgingival plaque and gingival crevicular fluid samples were taken. The Checkerboard technique for DNA-DNA hybridization and the enzyme-linked immunosorbent assay technique were performed. Teeth with MZ presented a lower percentage of bleeding on probing and tooth mobility compared to teeth with PFM with Ni-Cr alloy. Prosthodontic teeth harbored higher total levels of the 18 bacterial species than non-prosthodontic teeth. There was a higher prevalence of S. gordonii and V. parvula species in PFM with Ni-Cr alloy compared to MZ. There was an increase in IL-1β, TNF-α and CX3CL1 levels in PFM with Ni-Cr alloy compared to MZ. MZ is a candidate biomaterial with fewer negative effects on the periodontium, allowing for longer prostheses longevity in the mouth.
Collapse
Affiliation(s)
| | - Natividad Castro-Alarcón
- Department of Microbiology, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero
| | - Daniel Sandoval-Guevara
- Department of Implantology and Oral Rehabilitation, Faculty of Dentistry, Autonomous University of Guerrero
| | - Mirna Vázquez-Villamar
- Agricultural Microbiology Laboratory, Faculty of Agricultural and Environmental Science, Autonomous University of Guerrero
| | - Karla Fernández-Acosta
- Department of Implantology and Oral Rehabilitation, Faculty of Dentistry, Autonomous University of Guerrero
| | - Mayra Yanet Méndez-Gómez
- Department of Implantology and Oral Rehabilitation, Faculty of Dentistry, Autonomous University of Guerrero
| | - Isela Parra-Rojas
- Obesity and Diabetes Research Laboratory, Faculty of Chemical-Biological Sciences, Autonomous University of Guerrero
| | | |
Collapse
|
2
|
Yang M, Zhang X, Ma S, Zhang Q, Peng C, Fan H, Dai L, Li J, Cheng L. Shumkonia mesophila gen. nov., sp. nov., a novel representative of Shumkoniaceae fam. nov. and its potentials for extracellular polymeric substances formation and sulfur metabolism revealed by genomic analysis. Antonie Van Leeuwenhoek 2023; 116:1359-1374. [PMID: 37843737 DOI: 10.1007/s10482-023-01878-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/03/2023] [Indexed: 10/17/2023]
Abstract
A microaerophilic, mesophilic, chemoorganoheterotrophic bacterium, designated Y-P2T, was isolated from oil sludge enrichment in China. Cells of the strain were Gram-stain-negative, non-motile, non-spore-forming, rod-shaped or slightly curved with 0.8-3.0 µm in length and 0.4-0.6 µm in diameter. The strain Y-P2T grew optimally at 25 °C (range from 15 to 30 °C) and pH 7.0 (range from pH 6.0 to 7.5) without NaCl. The major cellular fatty acids were C16:0, summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), summed feature 8 (C18:1 ω7c and/or C18:1 ω6c). The main polar liquids of strain Y-P2T comprised phosphatidylethanolamine (PE) and phosphatidylglycerol (PG). The respiratory quinone was Q-10. Acetate and H2 were the fermentation products of glucose. The DNA G + C content was 66.0%. Strain Y-P2T shared the highest 16S rRNA gene sequence similarity (90.3-90.6%) with species within Oceanibaculum of family Thalassobaculaceae in Rhodospirillales. Phylogenetic analyses based on 16S rRNA gene sequences and genomes showed that strain Y-P2T formed a distinct evolutionary lineage within the order Rhodospirillales. On the basis of phenotypic, phylogenetic and phylogenomic data, we propose that strain Y-P2T represents a novel species in a novel genus, for which Shumkonia mesophila gen. nov., sp. nov., within a new family Shumkoniaceae fam. nov. The type strain is Y-P2T (= CCAM 826 T = JCM 34766 T).
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
| | - Xue Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
| | - Shichun Ma
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
- National Agricultural Experimental Station for Microorganisms, Shuangliu, Chengdu, 610213, Sichuan Province, People's Republic of China
| | - Qiumei Zhang
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
| | - Chenghui Peng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
| | - Hui Fan
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
| | - Lirong Dai
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
| | - Jiang Li
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China
| | - Lei Cheng
- Key Laboratory of Development and Application of Rural Renewable Energy, Biogas Institute of Ministry of Agriculture and Rural Affairs, Chengdu, 610041, Sichuan Province, People's Republic of China.
- Center for Anaerobic Microbial Resources of Sichuan Province, Chengdu, 610041, People's Republic of China.
- National Agricultural Experimental Station for Microorganisms, Shuangliu, Chengdu, 610213, Sichuan Province, People's Republic of China.
| |
Collapse
|
3
|
Manthe J, Cheng KY, Bijukumar D, Barba M, Pourzal R, Neto M, Mathew MT. Hip implant modular junction: The role of CoCrMo alloy microstructure on fretting-corrosion. J Mech Behav Biomed Mater 2022; 134:105402. [PMID: 36041275 PMCID: PMC10507884 DOI: 10.1016/j.jmbbm.2022.105402] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/09/2022] [Accepted: 07/24/2022] [Indexed: 11/29/2022]
Abstract
Cobalt-chromium-molybdenum (CoCrMo) alloy is one of the most used metals in total hip replacement (THR) due to the alloy's superior corrosion qualities and biocompatibility. Over time these prostheses may undergo wear and corrosion processes in a synergistic process known as tribocorrosion. Implant retrieval studies have shown that damage patterns on THR modular junction surfaces indicating specifically in vivo fretting-corrosion to take place. To date, there have been no studies on the fretting-corrosion behaviors of CoCrMo alloy under the consideration of specific microstructural features. A custom-built flat-on-flat fretting-corrosion setup was utilized to test the synergistic tribocorrosion behavior of fretting-corrosion. The difference in microstructure was generated through the cutting orientations of the transverse and the longitudinal direction of the bar stock material, where the longitudinal cut exhibits a characteristic banded microstructure (banded group) and the transverse cut a homogenous microstructure (unbanded group). A three-electrode system was employed to monitor the induced currents. Two different types of electrolytes were used in the current study: 1. Bovine calf serum (BCS-30 g/L protein) (normal conditions) 2. BCS with Lipopolysaccharide (LPS, 0.15 μg/ml) (simulated infectious conditions). In the free potential mode, banded samples showed an increased potential compared to the unbanded samples. In potentiostatic conditions, the banded group also exhibited a higher induced current in both electrolyte environments, indicating more corrosion loss. Both Nyquist and Bode plots showed both orientations of metal becoming more corrosion resistant post-fretting when compared to pre-fretting data. The longitudinal group at OCP demonstrated a unique shape of the fretting-loop, which might be related to tribochemical reactions. Based on the mechanical, electrochemical, and surface characterization data, the transverse group (unbanded) microstructures demonstrates a higher resistance to fretting-corrosion damage.
Collapse
Affiliation(s)
- Jacob Manthe
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Kai Yuan Cheng
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | - Divya Bijukumar
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA
| | | | - Robin Pourzal
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mozart Neto
- Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA
| | - Mathew T Mathew
- RMDR Lab, Department of Biomedical Sciences, University of Illinois College of Medicine, Rockford, IL, USA; Department of Orthopedics, Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
4
|
da Silva LJ, Leal MB, Valente MLC, de Castro DT, Pagnano VO, Dos Reis AC, Bezzon OL. Effect of casting atmosphere on the marginal deficiency and misfit of Ni-Cr alloys with and without beryllium. J Prosthet Dent 2016; 118:83-88. [PMID: 27927286 DOI: 10.1016/j.prosdent.2016.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 10/03/2016] [Accepted: 10/03/2016] [Indexed: 11/25/2022]
Abstract
STATEMENT OF PROBLEM The marginal adaptation of prosthetic crowns is still a significant clinical problem. PURPOSE The purpose of this in vitro study was to evaluate the marginal deficiency and misfit of Ni-Cr alloys with and without beryllium under different casting conditions. MATERIAL AND METHODS Four casting conditions were selected: flame-torch, induction/argon, induction/vacuum, and induction/air; and 2 alloys were used, Ni-Cr-Be and Ni-Cr. For each group, 10 metal specimens were prepared. Silicone indirect impressions and analysis of the degree of rounding were used to evaluate the marginal deficiencies of metal copings, and a standardized device for the setting pressure associated with optical microscopy was used to analyze the marginal misfit. Results were evaluated with 2-way ANOVA (α=.05), followed by the Tukey honest significant difference post hoc test, and the Pearson correlation test (α=.05). RESULTS Alloy (P<.001) and casting technique (P<.001) were shown to affect marginal deficiencies. The Ni-Cr cast using the torch technique showed the highest marginal deficiency, and the Ni-Cr-Be cast in a controlled argon atmosphere showed the lowest (P<.001). Alloy (P=.472) and casting techniques (P=.206) did not affect the marginal misfit, but significant differences were found in the interaction (P=.001); the lowest misfit was achieved using the Ni-Cr-Be, and the highest misfit occurred with the molten Ni-Cr, using the cast torch technique. No correlation was found between deficiency and marginal misfit (r=.04, P=.69). CONCLUSIONS The interactions demonstrated that the alloy containing beryllium that was cast in an argon atmosphere led to reduced marginal deficiency. Improved marginal adaptation can be achieved for the same alloy by using the torch technique.
Collapse
Affiliation(s)
| | - Monica B Leal
- Associated Professor, Department of Dentistry of the Federal University of Sergipe, Sergipe, Brazil
| | - Mariana L C Valente
- Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, Brazil
| | - Denise T de Castro
- Doctoral student, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, Brazil
| | - Valéria O Pagnano
- Associate Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, Brazil
| | - Andréa C Dos Reis
- Associate Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, Brazil.
| | - Osvaldo L Bezzon
- Professor, Department of Dental Materials and Prosthodontics, Ribeirão Preto Dental School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|