1
|
Rong Y, Liu F, Zhou H, Yu T, Qin Z, Cao Q, Liu L, Ma X, Qu L, Xu P, Liao X, Jiang Q, Zhang N, Xu X. Reprogramming of arachidonic acid metabolism using α-terpineol to alleviate asthma: insights from metabolomics. Food Funct 2024; 15:4292-4309. [PMID: 38526853 DOI: 10.1039/d3fo04078j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Asthma is a chronic inflammatory disorder in airways with typical pathologic features of airway inflammation and mucus hypersecretion. α-Terpineol is a monocyclic terpene found in many natural plants and foods. It has been reported to possess a wide range of pharmacological activities including anti-inflammatory and expectorant effects. However, the role of α-terpineol in asthma and its potential protective mechanism have not been well elucidated. This study is designed to investigate the pharmacological effect and mechanism of α-terpineol on asthmatic mice using the metabolomics platform. A murine model of asthma was established using ovalbumin (OVA) sensitization and then challenged for one week. The leukocyte count and inflammatory cytokines in the bronchoalveolar lavage fluid (BALF), lung histopathology, inflammatory infiltrate and mucus secretion were evaluated. An ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS)-based metabolomics study was performed on lung tissues and serum to explore endogenous small molecule metabolites affected by α-terpineol in asthmatic mice. After α-terpineol treatment, leukocyte count, inflammatory cytokines in the BALF, and peribronchial inflammation infiltration were significantly downregulated. Goblet cell hyperplasia and mucus secretion were attenuated, with the level of Muc5ac in BALF decreased. These results proved the protective effect of α-terpineol against airway inflammation, mucus hypersecretion and Th1/Th2 immune imbalance. To further investigate the underlying mechanisms of α-terpineol in asthma treatment, UPLC-MS/MS-based metabolomics analysis was performed. 26 and 15 identified significant differential metabolites were found in the lung tissues and serum of the control, model and α-terpineol groups, respectively. Based on the above differential metabolites, enrichment analysis showed that arachidonic acid (AA) metabolism was reprogrammed in both mouse lung tissues and serum. 5-Lipoxygenase (5-LOX) and cysteinyl leukotrienes (CysLTs) are the key enzyme and the end product of AA metabolism, respectively. In-depth studies have shown that pretreatment with α-terpineol can alleviate asthma by decreasing the AA level, downregulating the expression of 5-LOX and reducing the accumulation of CysLTs in mouse lung tissues. In summary, this study demonstrates that α-terpineol is a potential agent that can prevent asthma via regulating disordered AA metabolism.
Collapse
Affiliation(s)
- Ying Rong
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Fanglin Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Hui Zhou
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Tong Yu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Zhaolong Qin
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Qianwen Cao
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Luyao Liu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xiaoge Ma
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Lingbo Qu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Peirong Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xinglin Liao
- Nanyang LANHAISENYUAN Medical Technology Ltd, CO. Nanyang, Henan, 473000, China
| | - Qiman Jiang
- Nanyang LANHAISENYUAN Medical Technology Ltd, CO. Nanyang, Henan, 473000, China
| | - Nan Zhang
- Department of Pharmaceutics, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| | - Xia Xu
- Department of Medical Analysis, School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
| |
Collapse
|
2
|
Marques CF, Marques MM, Justino GC. Leukotrienes vs. Montelukast—Activity, Metabolism, and Toxicity Hints for Repurposing. Pharmaceuticals (Basel) 2022; 15:ph15091039. [PMID: 36145259 PMCID: PMC9505853 DOI: 10.3390/ph15091039] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Increasing environmental distress is associated with a growing asthma incidence; no treatments are available but montelukast (MTK)—an antagonist of the cysteinyl leukotrienes receptor 1—is widely used in the management of symptoms among adults and children. Recently, new molecular targets have been identified and MTK has been proposed for repurposing in other therapeutic applications, with several ongoing clinical trials. The proposed applications include neuroinflammation control, which could be explored in some neurodegenerative disorders, such as Alzheimer’s and Parkinson’s diseases (AD and PD). However, this drug has been associated with an increasing number of reported neuropsychiatric adverse drug reactions (ADRs). Besides, and despite being on the market since 1998, MTK metabolism is still poorly understood and the mechanisms underlying neuropsychiatric ADRs remain unknown. We review the role of MTK as a modulator of leukotriene pathways and systematize the current knowledge about MTK metabolism. Known toxic effects of MTK are discussed, and repurposing applications are presented comprehensively, with a focus on AD and PD.
Collapse
Affiliation(s)
- Cátia F. Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Maria Matilde Marques
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Gonçalo C. Justino
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|