1
|
Vlasova V, Lapina T, Cheng Q, Ermilova E. Loss of PII-dependent control of arginine biosynthesis in Dunaliella salina. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 351:112327. [PMID: 39581352 DOI: 10.1016/j.plantsci.2024.112327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/19/2024] [Accepted: 11/22/2024] [Indexed: 11/26/2024]
Abstract
In cyanobacteria and most Archaeplastida, Arg regulates its formation via allosteric inhibition of the controlling enzyme, N-acetyl-L-glutamate kinase (NAGK) that requires PII protein to properly sense the feedback inhibitor. Although PII expression has been shown to be reduced in Dunaliella salina compared to other green algae, the potential impact of this protein on DsNAGK activity remains unclear. We here performed coupled enzyme assay and surface plasmon resonance analysis and show that DsNAGK is activated by NAG and inhibited by Arg but is not controlled by DsPII. Moreover, DsPII has likely lost its function as an effective glutamine sensor. Replacement of the C-terminus from DsPII with the C-terminus from Chlamydomonas PII restored sensitivity to glutamine in a recombinant DsPII protein, demonstrating the importance of C-terminal residues close to the Q-loop for PII functions. The findings are discussed in the context of the relationship between NAGK control and the acquisition of salinity tolerance during evolution.
Collapse
Affiliation(s)
- Vitalina Vlasova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Tatiana Lapina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia
| | - Qi Cheng
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Hebei Agricultural University, 2596 Lekai South Street, Baoding, Hebei 071001, China
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg 199034, Russia.
| |
Collapse
|
2
|
Vlasova V, Lapina T, Statinov V, Ermilova E. N-Acetyl-L-glutamate Kinase of Chlamydomonas reinhardtii: In Vivo Regulation by PII Protein and Beyond. Int J Mol Sci 2023; 24:12873. [PMID: 37629055 PMCID: PMC10454706 DOI: 10.3390/ijms241612873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
N-Acetyl-L-glutamate kinase (NAGK) catalyzes the rate-limiting step in the ornithine/arginine biosynthesis pathway in eukaryotic and bacterial oxygenic phototrophs. NAGK is the most highly conserved target of the PII signal transduction protein in Cyanobacteria and Archaeplastida (red algae and Chlorophyta). However, there is still much to be learned about how NAGK is regulated in vivo. The use of unicellular green alga Chlamydomonas reinhardtii as a model system has already been instrumental in identifying several key regulation mechanisms that control nitrogen (N) metabolism. With a combination of molecular-genetic and biochemical approaches, we show the existence of the complex CrNAGK control at the transcriptional level, which is dependent on N source and N availability. In growing cells, CrNAGK requires CrPII to properly sense the feedback inhibitor arginine. Moreover, we provide primary evidence that CrPII is only partly responsible for regulating CrNAGK activity to adapt to changing nutritional conditions. Collectively, our results suggest that in vivo CrNAGK is tuned at the transcriptional and post-translational levels, and CrPII and additional as yet unknown factor(s) are integral parts of this regulation.
Collapse
Affiliation(s)
| | | | | | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, 199034 Saint-Petersburg, Russia; (V.V.); (T.L.); (V.S.)
| |
Collapse
|
3
|
Selim KA, Ermilova E, Forchhammer K. From cyanobacteria to Archaeplastida: new evolutionary insights into PII signalling in the plant kingdom. THE NEW PHYTOLOGIST 2020; 227:722-731. [PMID: 32077495 DOI: 10.1111/nph.16492] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/13/2020] [Indexed: 05/20/2023]
Abstract
The PII superfamily consists of signal transduction proteins found in all domains of life. Canonical PII proteins sense the cellular energy state through the competitive binding of ATP and ADP, and carbon/nitrogen balance through 2-oxoglutarate binding. The ancestor of Archaeplastida inherited its PII signal transduction protein from an ancestral cyanobacterial endosymbiont. Over the course of evolution, plant PII proteins acquired a glutamine-sensing C-terminal extension, subsequently present in all Chloroplastida PII proteins. The PII proteins of various algal strains (red, green and nonphotosynthetic algae) have been systematically investigated with respect to their sensory and regulatory properties. Comparisons of the PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, red algae, Chlorophyta and higher plants) have yielded insights into their evolutionary conservation vs adaptive properties. The highly conserved role of the controlling enzyme of arginine biosynthesis, N-acetyl-l-glutamate kinase (NAGK), as a main PII-interactor has been demonstrated across oxygenic phototrophs of cyanobacteria and Archaeplastida. In addition, the PII signalling system of red algae has been identified as an evolutionary intermediate between that of Cyanobacteria and Chloroplastida. In this review, we consider recent advances in understanding metabolic signalling by PII proteins of the plant kingdom.
Collapse
Affiliation(s)
- Khaled A Selim
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, 199034, Russia
| | - Karl Forchhammer
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| |
Collapse
|
4
|
Lapina TV, Kochemasova LY, Forchhammer K, Ermilova EV. Effects of arginine on Polytomella parva growth, PII protein levels and lipid body formation. PLANTA 2019; 250:1379-1385. [PMID: 31359139 DOI: 10.1007/s00425-019-03249-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/25/2019] [Indexed: 06/10/2023]
Abstract
L-Arginine supports growth and resulted in increased PII signaling protein levels and lipid droplet accumulation in the colorless green alga Polytomella parva. Polytomella parva, a model system for nonphotosynthetic green algae, utilizes ammonium and several carbon sources, including ethanol and acetate. We previously reported that P. parva accumulates high amounts of arginine with the key enzyme of the ornithine/arginine biosynthesis pathway, N-acetyl-L-glutamate kinase, exhibiting high activity. Here we demonstrate that L-arginine can be used by this alga as a nitrogen source. Externally supplied arginine directly influenced the levels of PII signaling protein and formation of triacylglycerol (TAG)-filled lipid bodies (LBs). Our results suggest that the nitrogen source, but not nitrogen starvation, may be critical for the accumulation of LBs in a PII-independent manner in P. parva.
Collapse
Affiliation(s)
- Tatiana V Lapina
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, Russia, 199034
| | - Lidiya Yu Kochemasova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, Russia, 199034
| | - Karl Forchhammer
- Organismic Interactions Department, Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Auf der Morgenstelle 28, 72076, Tübingen, Germany
| | - Elena V Ermilova
- Biological Faculty, Saint-Petersburg State University, Universitetskaya nab. 7/9, Saint-Petersburg, Russia, 199034.
| |
Collapse
|
5
|
Selim KA, Lapina T, Forchhammer K, Ermilova E. Interaction of N-acetyl-l-glutamate kinase with the PII signal transducer in the non-photosynthetic alga Polytomella parva: Co-evolution towards a hetero-oligomeric enzyme. FEBS J 2019; 287:465-482. [PMID: 31287617 PMCID: PMC7027753 DOI: 10.1111/febs.14989] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/17/2019] [Accepted: 07/06/2019] [Indexed: 12/27/2022]
Abstract
During evolution, several algae and plants became heterotrophic and lost photosynthesis; however, in most cases, a nonphotosynthetic plastid was maintained. Among these organisms, the colourless alga Polytomella parva is a special case, as its plastid is devoid of any DNA, but is maintained for specific metabolic tasks carried out by nuclear encoded enzymes. This makes P. parva attractive to study molecular events underlying the transition from autotrophic to heterotrophic lifestyle. Here we characterize metabolic adaptation strategies of P. parva in comparison to the closely related photosynthetic alga Chlamydomonas reinhardtii with a focus on the role of plastid‐localized PII signalling protein. Polytomella parva accumulates significantly higher amounts of most TCA cycle intermediates as well as glutamate, aspartate and arginine, the latter being specific for the colourless plastid. Correlating with the altered metabolite status, the carbon/nitrogen sensory PII signalling protein and its regulatory target N‐acetyl‐l‐glutamate‐kinase (NAGK; the controlling enzyme of arginine biosynthesis) show unique features: They have co‐evolved into a stable hetero‐oligomeric complex, irrespective of effector molecules. The PII signalling protein, so far known as a transiently interacting signalling protein, appears as a permanent subunit of the enzyme NAGK. NAGK requires PII to properly sense the feedback inhibitor arginine, and moreover, PII tunes arginine‐inhibition in response to glutamine. No other PII effector molecules interfere, indicating that the PII‐NAGK system in P. parva has lost the ability to estimate the cellular energy and carbon status but has specialized to provide an entirely glutamine‐dependent arginine feedback control, highlighting the evolutionary plasticity of PII signalling system.
Collapse
Affiliation(s)
- Khaled A Selim
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Germany
| | - Tatyana Lapina
- Biological Faculty, Saint-Petersburg State University, Russia
| | - Karl Forchhammer
- Department of Microbiology/Organismic Interactions, Interfaculty Institute of Microbiology and Infection Medicine, Eberhard-Karls-Universität Tübingen, Germany
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Russia
| |
Collapse
|
6
|
Dai R, Zhou Y, Chen Y, Zhang X, Yan Y, An D. Effects of arginine on the growth and microcystin-LR production of Microcystis aeruginosa in culture. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:706-712. [PMID: 30245426 DOI: 10.1016/j.scitotenv.2018.09.213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 09/15/2018] [Accepted: 09/16/2018] [Indexed: 06/08/2023]
Abstract
Although toxic cyanobacterial blooms and their toxins threaten drinking water and ecology and are promoted by nutrient loading, the precise nutrient regime that increases cyanobacterial populations and toxin production is poorly understood. Here, the influences of arginine (Arg), as a common amino acid with high nitrogen content, on the growth and microcystins (MCs) production of Microcystis aeruginosa (M. aeruginosa) were investigated by an isotope method (15N). The results showed that the biomass and production of microcystin-LR (MC-LR) increased with an increase in initial Arg concentrations in the range of 0.3-1.4 mmol-N L-1, whereas a higher Arg concentration (3.6 mmol-N L-1) inhibited the growth. MC-LR on different days (days 0, 6, 12, and 18) was detected by liquid chromatography with tandem mass spectrometry (LC-MS/MS) after incubation with 15N-Arg. The MC-LR molecular weight increased from 995 to 1004 with 100% relative abundance with 10 15N atoms bound by the Adda, Arg (4 15N), Glu, Mdha, Ala, Leu, and MeAsp residues on day 18. It seems that there was a sequential order when M. aeruginosa assimilated Arg to synthesize MC-LR. The Arg residue in the molecule of MC-LR was the last one to be labeled by 15N from 15N-arginine. This study not only presents a deeper insight into the biosynthesis of free amino acids that are incorporated into MCs but also reminds us of the potential risk caused by Arg, which should arouse concerns.
Collapse
Affiliation(s)
- Ruihua Dai
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Yanping Zhou
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Yanan Chen
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Xufeng Zhang
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Yangwei Yan
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China
| | - Dong An
- Department of Environmental Science & Engineering, Fudan University, 2205 Songhu Road, Shanghai 200438, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Zalutskaya Z, Kochemasova L, Ermilova E. Dual positive and negative control of Chlamydomonas PII signal transduction protein expression by nitrate/nitrite and NO via the components of nitric oxide cycle. BMC PLANT BIOLOGY 2018; 18:305. [PMID: 30482162 PMCID: PMC6258461 DOI: 10.1186/s12870-018-1540-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 11/20/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND The PII proteins constitute a large superfamily, present in all domains of life. Until now, PII proteins research in Chloroplastida (green algae and land plants) has mainly focused on post-translation regulation of these signal transductors. Emerging evidence suggests that PII level is tightly controlled with regard to the nitrogen source and the physiological state of cells. RESULT Here we identify that a balance of positive (nitrate and nitrite) and negative (nitric oxide) signals regulates Chlamydomonas GLB1. We found that PII expression is downregulated by ammonium through a nitric oxide (NO)-dependent mechanism. We show that nitrate reductase (NR) and its partner, truncated hemoglobin 1 (THB1), participate in a signaling pathway for dual control of GLB1 expression. Moreover, NO dependent guanilate cyclase appeared to be involved in the negative control of GLB1 transcription. CONCLUSION This study has revealed the existence of the complex GLB1 control at transcription level, which is dependent on nitrogen source. Importantly, we found that GLB1 gene expression pattern is very similar to that observed for nitrate assimilation genes, suggesting interconnecting/coordinating PII-dependent and nitrate assimilation pathways.
Collapse
Affiliation(s)
- Zhanneta Zalutskaya
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Lidiya Kochemasova
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Elena Ermilova
- Biological Faculty, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
8
|
The PII signaling protein from red algae represents an evolutionary link between cyanobacterial and Chloroplastida PII proteins. Sci Rep 2018; 8:790. [PMID: 29335634 PMCID: PMC5768801 DOI: 10.1038/s41598-017-19046-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/15/2017] [Indexed: 11/16/2022] Open
Abstract
PII superfamily consists of widespread signal transduction proteins found in all domains of life. Whereas they are well-studied in Archaea, Bacteria and Chloroplastida, no PII homolog has been analyzed in Rhodophyta (red algae), where PII is encoded by a chloroplast localized glnB gene. Here, we characterized relevant sensory properties of PII from the red alga Porphyra purpurea (PpPII) in comparison to PII proteins from different phyla of oxygenic phototrophs (cyanobacteria, Chlamydomonas and Physcomitrella) to assess evolutionary conservation versus adaptive properties. Like its cyanobacterial counterparts, PpPII binds ATP/ADP and 2-oxoglutarate in synergy with ATP. However, green algae and land plant PII proteins lost the ability to bind ADP. In contrast to PII proteins from green algae and land plants, PpPII enhances the activity of N-acetyl-L-glutamate kinase (NAGK) and relieves it from feedback inhibition by arginine in a glutamine-independent manner. Like PII from Chloroplastida, PpPII is not able to interact with the cyanobacterial transcriptional co-activator PipX. These data emphasize the conserved role of NAGK as a major PII-interactor throughout the evolution of oxygenic phototrophs, and confirms the specific role of PipX for cyanobacteria. Our results highlight the PII signaling system in red algae as an evolutionary intermediate between Cyanobacteria and Chlorophyta.
Collapse
|
9
|
Li Y, Liu W, Sun LP, Zhou ZG. Evidence for PII with NAGK interaction that regulates Arg synthesis in the microalga Myrmecia incisa in response to nitrogen starvation. Sci Rep 2017; 7:16291. [PMID: 29176648 PMCID: PMC5701185 DOI: 10.1038/s41598-017-16644-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/15/2017] [Indexed: 11/12/2022] Open
Abstract
To understand why most eukaryotic microalgae accumulate lipids during nitrogen starvation stress, a gene, MiglnB, encoding PII, a signal transduction protein, was cloned from the arachidonic acid-rich microalga Myrmecia incisa Reisigl. Similarly to its homologues, MiPII contains three conserved T-, B-, and C-loops. In the presence of abundant Mg2+, ATP, and Gln, MiPII upregulates Arg biosynthesis by interacting with the rate-limiting enzyme, MiNAGK, as evidenced by yeast two-hybrid, co-immunoprecipitation assays, and kinetics analysis of enzyme-catalyzed reactions. However, this interaction of MiPII with MiNAGK is reversed by addition of 2-oxoglutarate (2-OG). Moreover, this interaction is present in the chloroplasts of M. incisa, as illustrated cytologically by both immunoelectron microscopy and agroinfiltration of Nicotiana benthamiana leaves to determine the subcellular localization of MiPII with MiNAGK. During the process of nitrogen starvation, soluble Arg levels in M. incisa are modulated by a change in MiNAGK enzymatic activity, both of which are significantly correlated (r = 0.854). A model for the manipulation of Arg biosynthesis via MiPII in M. incisa chloroplasts in response to nitrogen starvation is proposed. The ATP and 2-OG saved from Arg biosynthesis is thus suggested to facilitate the accumulation of fatty acids and triacylglycerol in M. incisa during exposure to nitrogen starvation.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Wei Liu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Li-Ping Sun
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China. .,National Demonstration Center for the Experimental Teaching of Fisheries Science, Shanghai Ocean University, Shanghai, 201306, China. .,International Research Center for Marine Biosciences Conferred by Ministry of Science and Technology, Shanghai Ocean University, Shanghai, 201306, China.
| |
Collapse
|
10
|
Chen Y, Xu C, Vaidyanathan S. Microalgae: a robust "green bio-bridge" between energy and environment. Crit Rev Biotechnol 2017; 38:351-368. [PMID: 28764567 DOI: 10.1080/07388551.2017.1355774] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microalgae are a potential candidate for biofuel production and environmental treatment because of their specific characteristics (e.g. fast growth, carbon neutral, and rich lipid accumulations). However, several primary bottlenecks still exist in current technologies, including low biomass conversion efficiency, bio-invasion from the external environment, limited or costly nutrient sources, and high energy and capital input for harvest, and stalling its industrial progression. Coupling biofuel production with environmental treatment renders microalgae a more feasible feedstock. This review focuses on microalgae biotechnologies for both bioenergy generation and environmental treatment (e.g. CO2 sequestration and wastewater reclamation). Different intelligent technologies have been developed, especially during the last decade, to eliminate the bottlenecks, including mixotrophic/heterotrophic cultivation, immobilization, and co-cultivation. It has been realized that any single purpose for the cultivation of microalgae is not an economically feasible option. Combinations of applications in biorefineries are gradually reckoned to be necessary as it provides more economically feasible and environmentally sustainable operations. This presents microalgae as a special niche occupier linking the fields of energy and environmental sciences and technologies. The integrated application of microalgae is also proven by most of the life-cycle analysis studies. This study summarizes the latest development of primary microalgal biotechnologies in the two areas that will bring researchers a comprehensive view towards industrialization with an economic perspective.
Collapse
Affiliation(s)
- Yimin Chen
- a Third Institute of Oceanography, State Oceanic Administration , Xiamen , People's Republic of China
| | - Changan Xu
- a Third Institute of Oceanography, State Oceanic Administration , Xiamen , People's Republic of China
| | - Seetharaman Vaidyanathan
- b Department of Chemical and Biological Engineering, ChELSI Institute, Advanced Biomanufacturing Centre , The University of Sheffield , Sheffield , UK
| |
Collapse
|
11
|
Minaeva E, Ermilova E. Responses triggered in chloroplast of Chlorella variabilis NC64A by long-term association with Paramecium bursaria. PROTOPLASMA 2017; 254:1769-1776. [PMID: 28074287 DOI: 10.1007/s00709-016-1073-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
The unicellular green alga Chlorella variabilis NC64A is an endosymbiont of the ciliate Paramecium bursaria. The host's control, including the transfer of biochemical substrates from P. bursaria to C. variabilis, is involved in symbiotic relationships. C. variabilis NC64A that had been re-infected to P. bursaria for more than 1 year and isolated from the host showed higher chlorophyll levels compared to those in free-living cells. Unlike the host, the expression of C. variabilis NC64A heat shock 70 kDa protein was independent of establishment of endosymbiosis. In symbiotic cells, the levels of PII signal transduction protein (CvPII) that coordinate the central C/N anabolic metabolism were slightly higher than those in free-living cells. Furthermore, the environmental cues (light and host food bacteria availability) affected the abundance of CvPII, suggesting that synthesis of the protein was influenced by the host. Moreover, arginine concentrations in the symbiotic algae of P. bursaria were also controlled by the host's nutritional conditions. Together, our results imply that signal substrates and/or products of metabolism in host cells might act as messengers mediating the regulation of key events in symbiont cells.
Collapse
Affiliation(s)
- Ekaterina Minaeva
- Laboratory Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034, Saint-Petersburg, Russia
| | - Elena Ermilova
- Laboratory Adaptation in Microorganisms, Biological Faculty, Saint-Petersburg State University, Universitetskaya em. 7/9, 199034, Saint-Petersburg, Russia.
| |
Collapse
|
12
|
Forchhammer K, Lüddecke J. Sensory properties of the PII signalling protein family. FEBS J 2015; 283:425-37. [PMID: 26527104 DOI: 10.1111/febs.13584] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/06/2015] [Accepted: 10/28/2015] [Indexed: 11/30/2022]
Abstract
PII signalling proteins constitute one of the largest families of signalling proteins in nature. An even larger superfamily of trimeric sensory proteins with the same architectural principle as PII proteins appears in protein structure databases. Large surface-exposed flexible loops protrude from the intersubunit faces, where effector molecules are bound that tune the conformation of the loops. Via this mechanism, PII proteins control target proteins in response to cellular ATP/ADP levels and the 2-oxoglutarate status, thereby coordinating the cellular carbon/nitrogen balance. The antagonistic (ATP versus ADP) and synergistic (2-oxoglutarate and ATP) mode of effector molecule binding is further affected by PII -receptor interaction, leading to a highly sophisticated signalling network organized by PII . Altogether, it appears that PII is a multitasking information processor that, depending on its interaction environment, differentially transmits information on the energy status and the cellular 2-oxoglutarate level. In addition to the basic mode of PII function, several bacterial PII proteins may transmit a signal of the cellular glutamine status via covalent modification. Remarkably, during the evolution of plant chloroplasts, glutamine signalling by PII proteins was re-established by acquisition of a short sequence extension at the C-terminus. This plant-specific C-terminus makes the interaction of plant PII proteins with one of its targets, the arginine biosynthetic enzyme N-acetyl-glutamate kinase, glutamine-dependent.
Collapse
Affiliation(s)
- Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| | - Jan Lüddecke
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard-Karls-Universität Tübingen, Germany
| |
Collapse
|