1
|
Castelli M, Nardi T, Giovannini M, Sassera D. Addictive manipulation: a perspective on the role of reproductive parasitism in the evolution of bacteria-eukaryote symbioses. Biol Lett 2024; 20:20240310. [PMID: 39288812 PMCID: PMC11496725 DOI: 10.1098/rsbl.2024.0310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/09/2024] [Accepted: 07/26/2024] [Indexed: 09/19/2024] Open
Abstract
Wolbachia bacteria encompass noteworthy reproductive manipulators of their arthropod hosts. which influence host reproduction to favour their own transmission, also exploiting toxin-antitoxin systems. Recently, multiple other bacterial symbionts of arthropods have been shown to display comparable manipulative capabilities. Here, we wonder whether such phenomena are truly restricted to arthropod hosts. We focused on protists, primary models for evolutionary investigations on eukaryotes due to their diversity and antiquity, but still overall under-investigated. After a thorough re-examination of the literature on bacterial-protist interactions with this question in mind, we conclude that such bacterial 'addictive manipulators' of protists do exist, are probably widespread, and have been overlooked until now as a consequence of the fact that investigations are commonly host-centred, thus ineffective to detect such behaviour. Additionally, we posit that toxin-antitoxin systems are crucial in these phenomena of addictive manipulation of protists, as a result of recurrent evolutionary repurposing. This indicates intriguing functional analogy and molecular homology with plasmid-bacterial interplays. Finally, we remark that multiple addictive manipulators are affiliated with specific bacterial lineages with ancient associations with diverse eukaryotes. This suggests a possible role of addictive manipulation of protists in paving the way to the evolution of bacteria associated with multicellular organisms.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Michele Giovannini
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Biology, University of Florence, Florence, Italy
| | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
- IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
2
|
Suthaus A, Hess S. The vampyrellid amoeba Strigomyxa ruptor gen. et sp. nov. and its remarkable strategy to acquire algal cell contents. Ecol Evol 2024; 14:e70191. [PMID: 39211003 PMCID: PMC11358034 DOI: 10.1002/ece3.70191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
The vampire amoebae (Vampyrellida, Rhizaria) inhabit freshwater, marine, and terrestrial ecosystems and consume a wide range of eukaryotic prey. This includes diverse microalgae, fungi, and microscopic animals. One of the most captivating aspects of the vampyrellids is their ability to extract the cell contents of other eukaryotes after local dissolution of the prey cell wall, a feeding strategy that occurs in several vampyrellid families, but is best studied in Vampyrella species that attack zygnematophyte green algae. Here, we report two new vampyrellid strains from temperate moorlands in Germany with a yet-undescribed feeding strategy: internal protoplast extraction and cell wall regurgitation. This feeding strategy involves the phagocytosis of whole desmid cells (genus Closterium, Zygnematophyceae), internal cleavage of the algal cell wall, extraction of the cell contents, and subsequent exocytosis of bundled empty cell walls. The large primary food vacuole formed during the process has exceptional functions, as it forms internal feeding pseudopodia, packages algal cell contents into smaller secondary vacuoles, and transforms into a "waste vacuole" with cell wall remnants. The new feeding strategy, which - in the widest sense - is reminiscent of the pellet casting of owls, reveals a stunningly sophisticated behavior of single protist cells. Based on morphological, phylogenetic, and autecological data, both vampyrellid strains are nearly identical and here assigned to a new and quite unique vampyrellid taxon, Strigomyxa ruptor gen. et sp. nov. (Leptophryidae, Vampyrellida).
Collapse
Affiliation(s)
- Andreas Suthaus
- Institute for ZoologyUniversity of CologneCologneGermany
- Division for Biology of Algae and Protozoa, Department of BiologyTechnical University of DarmstadtDarmstadtGermany
| | - Sebastian Hess
- Institute for ZoologyUniversity of CologneCologneGermany
- Division for Biology of Algae and Protozoa, Department of BiologyTechnical University of DarmstadtDarmstadtGermany
| |
Collapse
|
3
|
Cubillos CF, Aguilar P, Moreira D, Bertolino P, Iniesto M, Dorador C, López-García P. Exploring the prokaryote-eukaryote interplay in microbial mats from an Andean athalassohaline wetland. Microbiol Spectr 2024; 12:e0007224. [PMID: 38456669 PMCID: PMC10986560 DOI: 10.1128/spectrum.00072-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 01/28/2024] [Indexed: 03/09/2024] Open
Abstract
Microbial community assembly results from the interaction between biotic and abiotic factors. However, environmental selection is thought to predominantly shape communities in extreme ecosystems. Salar de Huasco, situated in the high-altitude Andean Altiplano, represents a poly-extreme ecosystem displaying spatial gradients of physicochemical conditions. To disentangle the influence of abiotic and biotic factors, we studied prokaryotic and eukaryotic communities from microbial mats and underlying sediments across contrasting areas of this athalassohaline ecosystem. The prokaryotic communities were primarily composed of bacteria, notably including a significant proportion of photosynthetic organisms like Cyanobacteria and anoxygenic photosynthetic members of Alpha- and Gammaproteobacteria and Chloroflexi. Additionally, Bacteroidetes, Verrucomicrobia, and Deltaproteobacteria were abundantly represented. Among eukaryotes, photosynthetic organisms (Ochrophyta and Archaeplastida) were predominant, alongside relatively abundant ciliates, cercozoans, and flagellated fungi. Salinity emerged as a key driver for the assembly of prokaryotic communities. Collectively, abiotic factors influenced both prokaryotic and eukaryotic communities, particularly those of algae. However, prokaryotic communities strongly correlated with photosynthetic eukaryotes, suggesting a pivotal role of biotic interactions in shaping these communities. Co-occurrence networks suggested potential interactions between different organisms, such as diatoms with specific photosynthetic and heterotrophic bacteria or with protist predators, indicating influences beyond environmental selection. While some associations may be explained by environmental preferences, the robust biotic correlations, alongside insights from other ecosystems and experimental studies, suggest that symbiotic and trophic interactions significantly shape microbial mat and sediment microbial communities in this athalassohaline ecosystem.IMPORTANCEHow biotic and abiotic factors influence microbial community assembly is still poorly defined. Here, we explore their influence on prokaryotic and eukaryotic community assembly within microbial mats and sediments of an Andean high-altitude polyextreme wetland system. We show that, in addition to abiotic elements, mutual interactions exist between prokaryotic and eukaryotic communities. Notably, photosynthetic eukaryotes exhibit a strong correlation with prokaryotic communities, specifically diatoms with certain bacteria and other protists. Our findings underscore the significance of biotic interactions in community assembly and emphasize the necessity of considering the complete microbial community.
Collapse
Affiliation(s)
- Carolina F. Cubillos
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Pablo Aguilar
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Millennium Nucleus of Austral Invasive Salmonids - INVASAL, Concepción, Chile
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Paola Bertolino
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Miguel Iniesto
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana, Instituto Antofagasta and Centro de Bioingeniería y Biotecnología (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | | |
Collapse
|
4
|
Castelli M, Nardi T, Gammuto L, Bellinzona G, Sabaneyeva E, Potekhin A, Serra V, Petroni G, Sassera D. Host association and intracellularity evolved multiple times independently in the Rickettsiales. Nat Commun 2024; 15:1093. [PMID: 38321113 PMCID: PMC10847448 DOI: 10.1038/s41467-024-45351-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2024] [Indexed: 02/08/2024] Open
Abstract
The order Rickettsiales (Alphaproteobacteria) encompasses multiple diverse lineages of host-associated bacteria, including pathogens, reproductive manipulators, and mutualists. Here, in order to understand how intracellularity and host association originated in this order, and whether they are ancestral or convergently evolved characteristics, we built a large and phylogenetically-balanced dataset that includes de novo sequenced genomes and a selection of published genomic and metagenomic assemblies. We perform detailed functional reconstructions that clearly indicates "late" and parallel evolution of obligate host-association in different Rickettsiales lineages. According to the depicted scenario, multiple independent horizontal acquisitions of transporters led to the progressive loss of biosynthesis of nucleotides, amino acids and other metabolites, producing distinct conditions of host-dependence. Each clade experienced a different pattern of evolution of the ancestral arsenal of interaction apparatuses, including development of specialised effectors involved in the lineage-specific mechanisms of host cell adhesion and/or invasion.
Collapse
Affiliation(s)
- Michele Castelli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Tiago Nardi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | | | - Greta Bellinzona
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Elena Sabaneyeva
- Department of Cytology and Histology, Saint Petersburg State University, Petersburg, Russia
| | - Alexey Potekhin
- Department of Microbiology, Saint Petersburg State University, Petersburg, Russia
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | | | | | - Davide Sassera
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy.
- IRCCS Policlinico San Matteo, Pavia, Italy.
| |
Collapse
|
5
|
Suthaus A, Hess S. Pseudovampyrella gen. nov.: A genus of Vampyrella-like protoplast extractors finds its place in the Leptophryidae. J Eukaryot Microbiol 2024; 71:e13002. [PMID: 37743754 DOI: 10.1111/jeu.13002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Vampyrellid amoebae are predatory protists, which consume a variety of eukaryotic prey and inhabit freshwater, marine and terrestrial ecosystems. Although they have been known for almost 150 years, much of their diversity lacks an in-depth characterization. To date, environmental sequencing data hint at several uncharacterized lineages, to which no phenotype is associated. Furthermore, there are numerous historically described species without any molecular information. This study reports on two new vampyrellid strains from moorlands, which extract the protoplasts of Closterium species (Zygnematophyceae). Our data on morphology, prey range specificity and feeding strategy reveal that the studied vampyrellids are very similar to the historically described Vampyrella closterii. However, phylogenetic analyses demonstrate that the two strains do not belong to the genus Vampyrella and, instead, form a distinct clade in the family Leptophryidae. Hence, we introduce a new genus of algivorous protoplast extractors, Pseudovampyrella gen. nov., with the species P. closterii (= V. closterii) and P. minor. Our findings indicate that the genetic diversity of morphologically described vampyrellid species might be hugely underrated.
Collapse
Affiliation(s)
- Andreas Suthaus
- Institute for Zoology, University of Cologne, Cologne, Germany
| | - Sebastian Hess
- Institute for Zoology, University of Cologne, Cologne, Germany
- Department of Biology, Technical University of Darmstadt, Darmstadt, Germany
| |
Collapse
|
6
|
Moye J, Schenk T, Hess S. Experimental evidence for enzymatic cell wall dissolution in a microbial protoplast feeder (Orciraptor agilis, Viridiraptoridae). BMC Biol 2022; 20:267. [PMID: 36464670 PMCID: PMC9721047 DOI: 10.1186/s12915-022-01478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/24/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Several protists have evolved the ability to perforate the cell walls of algae and fungi to specifically feed on their cell contents. These phagotrophic "protoplast feeders" represent an interesting mechanistic intermediate between predators and parasites and pose a number of cell biological questions. Although their fascinating feeding behaviour has been observed for the last 150 years, it is still unknown how protoplast feeders produce the well-defined and species-specific perforations in biochemically diverse cell walls. Differential expression analyses of the algivorous flagellate Orciraptor agilis (Viridiraptoridae, Cercozoa, Rhizaria) suggested the involvement of a highly expressed putative glycoside hydrolase of family GH5_5. To assess the importance of this carbohydrate-active enzyme in the feeding act of Orciraptor, we recombinantly produced its catalytic domain and studied the enzymatic activity, cellular localisation and function. RESULTS The GH5_5 catalytic domain from Orciraptor showed pronounced activity on soluble cellulose derivatives and mixed-linkage glucans, with reaction optima comparable to known GH5_5 representatives. Crystalline cellulose was not digested by the enzyme, which suggests a typical endocellulase activity. Immunocytochemistry with a polyclonal antibody raised against the GH5_5 domain revealed that the native endocellulase localises to the contact zone of Orciraptor and the algal cell wall (= perforation zone) and to intracellular granules, which were enriched during attack. Furthermore, the anti-GH5_5 antibody applied to live cells significantly reduced the feeding success of Orciraptor. The cells attacked the algae, which, however, resulted in numerous incomplete perforations. CONCLUSIONS Our experimental data from enzymatic assays, immunocytochemistry and inhibition experiments strongly suggest a key role of the GH5_5 endocellulase in cell wall dissolution by Orciraptor agilis. With that, we provide evidence that the well-defined perforations produced by protoplast feeders are caused by extracellular carbohydrate-active enzymes and made a first step towards establishing the molecular basis of a fascinating, yet poorly understood microbial feeding strategy.
Collapse
Affiliation(s)
- Jannika Moye
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Tobias Schenk
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany
| | - Sebastian Hess
- Institute for Zoology, University of Cologne, Zülpicher Str. 47b, 50674, Cologne, Germany.
| |
Collapse
|
7
|
Characterization of a Pseudokeronopsis Strain (Ciliophora, Urostylida) and Its Bacterial Endosymbiont “Candidatus Trichorickettsia” (Alphaproteobacteria, Rickettsiales). DIVERSITY 2022. [DOI: 10.3390/d14121032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Symbiotic associations between bacteria and ciliate protists are rather common. In particular, several cases were reported involving bacteria of the alphaproteobacterial lineage Rickettsiales, but the diversity, features, and interactions in these associations are still poorly understood. In this work, we characterized a novel ciliate protist strain originating from Brazil and its associated Rickettsiales endosymbiont by means of live and ultrastructural observations, as well as molecular phylogeny. Though with few morphological peculiarities, the ciliate was found to be phylogenetically affiliated with Pseudokeronopsis erythrina, a euryhaline species, which is consistent with its origin from a lagoon with significant spatial and seasonal salinity variations. The bacterial symbiont was assigned to “Candidatus Trichorickettsia mobilis subsp. hyperinfectiva”, being the first documented case of a Rickettsiales associated with urostylid ciliates. It resided in the host cytoplasm and bore flagella, similarly to many, but not all, conspecifics in other host species. These findings highlight the ability of “Candidatus Trichorickettsia” to infect multiple distinct host species and underline the importance of further studies on this system, in particular on flagella and their regulation, from a functional and also an evolutionary perspective, considering the phylogenetic proximity with the well-studied and non-flagellated Rickettsia.
Collapse
|
8
|
Kinopus chlorellivorus
gen. nov., sp. nov. (Vampyrellida, Rhizaria), a New Algivorous Protist Predator Isolated from Large-Scale Outdoor Cultures of
Chlorella sorokiniana. Appl Environ Microbiol 2022; 88:e0121522. [PMID: 36300943 PMCID: PMC9680614 DOI: 10.1128/aem.01215-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The vampyrellids (Vampyrellida, Rhizaria) are a major group of predatory amoebae that have attracted significant attention because of their diversity of feeding strategies. The crucial roles they play in important processes such as suppressing soil disease and controlling aquatic algae, and as microbial contaminants in outdoor large-scale algal cultures, have also received increasing attention.
Collapse
|
9
|
Hess S, Suthaus A. The Vampyrellid Amoebae (Vampyrellida, Rhizaria). Protist 2022; 173:125854. [DOI: 10.1016/j.protis.2021.125854] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/25/2021] [Accepted: 12/13/2021] [Indexed: 11/29/2022]
|
10
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
11
|
More K, Simpson AGB, Hess S. Description of the marine predator Sericomyxa perlucida gen. et sp. nov., a cultivated representative of the deepest branching lineage of vampyrellid amoebae (Vampyrellida, Rhizaria). J Eukaryot Microbiol 2021; 68:e12864. [PMID: 34152052 DOI: 10.1111/jeu.12864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The vampyrellids (Vampyrellida, Rhizaria) are naked amoebae of considerable genetic diversity. Three families have been well-defined (Vampyrellidae, Leptophryidae, and Placopodidae), but most vampyrellid lineages detected by environmental sequencing are poorly known or completely uncharacterized. In the brackish sediment of Lake Bras D'Or, Nova Scotia, Canada, we discovered an amoeba with a vampyrellid-like life history that was morphologically dissimilar from previously known vampyrellid taxa. We established a culture of this amoeba, studied its feeding behavior and prey range specificity, and characterized it with molecular phylogenetic methods and light and electron microscopy. The amoeba was a generalist predator (i.e. eukaryotroph), devouring a range of marine microalgae, with a strong affinity for some benthic diatoms and Chroomonas. Interestingly, the amoeba varied its feeding strategy depending on the prey species. Small diatoms were engulfed whole, while larger species were fed on through extraction with an invading pseudopodium. The SSU rRNA gene phylogenies robustly placed the amoeba in the most basal, poorly described lineage ("clade C") of the Vampyrellida. Based on the phylogenetic position and the distinct morphology of the studied amoeba, we here describe it as Sericomyxa perlucida gen. et sp. nov., and establish the new vampyrellid family Sericomyxidae for "clade C."
Collapse
Affiliation(s)
- Kira More
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Alastair G B Simpson
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| | - Sebastian Hess
- Department of Biology and Centre for Comparative Genomics and Evolutionary Bioinformatics, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
12
|
Pasqualetti C, Szokoli F, Rindi L, Petroni G, Schrallhammer M. The Obligate Symbiont " Candidatus Megaira polyxenophila" Has Variable Effects on the Growth of Different Host Species. Front Microbiol 2020; 11:1425. [PMID: 32733401 PMCID: PMC7360802 DOI: 10.3389/fmicb.2020.01425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
"Candidatus Megaira polyxenophila" is a recently described member of Rickettsiaceae which comprises exclusively obligate intracellular bacteria. Interestingly, these bacteria can be found in a huge diversity of eukaryotic hosts (protist, green algae, metazoa) living in marine, brackish or freshwater habitats. Screening of amplicon datasets revealed a high frequency of these bacteria especially in freshwater environments, most likely associated to eukaryotic hosts. The relationship of "Ca. Megaira polyxenophila" with their hosts and their impact on host fitness have not been studied so far. Even less is known regarding the responses of these intracellular bacteria to potential stressors. In this study, we used two phylogenetically close species of the freshwater ciliate Paramecium, Paramecium primaurelia and Paramecium pentaurelia (Ciliophora, Oligohymenophorea) naturally infected by "Ca. Megaira polyxenophila". In order to analyze the effect of the symbiont on the fitness of these two species, we compared the growth performance of both infected and aposymbiotic paramecia at different salinity levels in the range of freshwater and oligohaline brackish water i.e., at 0, 2, and 4.5 ppt. For the elimination of "Ca. Megaira polyxenophila" we established an antibiotic treatment to obtain symbiont-free lines and confirmed its success by fluorescence in situ hybridization (FISH). The population and infection dynamics during the growth experiment were observed by cell density counts and FISH. Paramecia fitness was compared applying generalized additive mixed models. Surprisingly, both infected Paramecium species showed higher densities under all salinity concentrations. The tested salinity concentrations did not significantly affect the growth of any of the two species directly, but we observed the loss of the endosymbiont after prolonged exposure to higher salinity levels. This experimental data might explain the higher frequency of "Ca. M. polyxenophila" in freshwater habitats as observed from amplicon data.
Collapse
Affiliation(s)
- Chiara Pasqualetti
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| | - Franziska Szokoli
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy.,Institut für Hydrobiologie, Technische Universität Dresden, Dresden, Germany
| | - Luca Rindi
- Dipartimento di Biologia, CoNISMa, Università di Pisa, Pisa, Italy
| | - Giulio Petroni
- Dipartimento di Biologia, Università di Pisa, Pisa, Italy
| | - Martina Schrallhammer
- Mikrobiologie, Institut für Biologie II, Albert-Ludwigs-Universität Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Modeo L, Salvetti A, Rossi L, Castelli M, Szokoli F, Krenek S, Serra V, Sabaneyeva E, Di Giuseppe G, Fokin SI, Verni F, Petroni G. "Candidatus Trichorickettsia mobilis", a Rickettsiales bacterium, can be transiently transferred from the unicellular eukaryote Paramecium to the planarian Dugesia japonica. PeerJ 2020; 8:e8977. [PMID: 32351785 PMCID: PMC7183750 DOI: 10.7717/peerj.8977] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 03/24/2020] [Indexed: 01/10/2023] Open
Abstract
Most of the microorganisms responsible for vector-borne diseases (VBD) have hematophagous arthropods as vector/reservoir. Recently, many new species of microorganisms phylogenetically related to agents of VBD were found in a variety of aquatic eukaryotic hosts; in particular, numerous new bacterial species related to the genus Rickettsia (Alphaproteobacteria, Rickettsiales) were discovered in protist ciliates and other unicellular eukaryotes. Although their pathogenicity for humans and terrestrial animals is not known, several indirect indications exist that these bacteria might act as etiological agents of possible VBD of aquatic organisms, with protists as vectors. In the present study, a novel strain of the Rickettsia-Like Organism (RLO) endosymbiont "Candidatus (Ca.) Trichorickettsia mobilis" was identified in the macronucleus of the ciliate Paramecium multimicronucleatum. We performed transfection experiments of this RLO to planarians (Dugesia japonica) per os. Indeed, the latter is a widely used model system for studying bacteria pathogenic to humans and other Metazoa. In transfection experiments, homogenized paramecia were added to food of antibiotic-treated planarians. Treated and non-treated (i.e. control) planarians were investigated at day 1, 3, and 7 after feeding for endosymbiont presence by means of PCR and ultrastructural analyses. Obtained results were fully concordant and suggest that this RLO endosymbiont can be transiently transferred from ciliates to metazoans, being detected up to day 7 in treated planarians' enterocytes. Our findings might offer insights into the potential role of ciliates or other protists as putative vectors for diseases caused by Rickettsiales or other RLOs and occurring in fish farms or in the wild.
Collapse
Affiliation(s)
- Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Alessandra Salvetti
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Leonardo Rossi
- CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy.,Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Department of Biosciences, University of Milan, Milan, Italy
| | - Franziska Szokoli
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany
| | - Sascha Krenek
- Institute of Hydrobiology, Dresden University of Technology, Dresden, Germany.,Department of River Ecology, Helmholtz Center for Environmental Research-UFZ, Magdeburg, Germany
| | | | - Elena Sabaneyeva
- Department of Cytology and Histology, Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, Pisa, Italy.,CIME, Centro Interdipartimentale di Microscopia Elettronica, University of Pisa, Pisa, Italy.,CISUP, Centro per l'Integrazione della Strumentazione, University of Pisa, Pisa, Italy
| |
Collapse
|
14
|
Tsao HF, Scheikl U, Herbold C, Indra A, Walochnik J, Horn M. The cooling tower water microbiota: Seasonal dynamics and co-occurrence of bacterial and protist phylotypes. WATER RESEARCH 2019; 159:464-479. [PMID: 31128471 PMCID: PMC6554697 DOI: 10.1016/j.watres.2019.04.028] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 04/04/2019] [Accepted: 04/13/2019] [Indexed: 05/30/2023]
Abstract
Cooling towers for heating, ventilation and air conditioning are ubiquitous in the built environment. Often located on rooftops, their semi-open water basins provide a suitable environment for microbial growth. They are recognized as a potential source of bacterial pathogens and have been associated with disease outbreaks such as Legionnaires' disease. While measures to minimize public health risks are in place, the general microbial and protist community structure and dynamics in these systems remain largely elusive. In this study, we analysed the microbiome of the bulk water from the basins of three cooling towers by 16S and 18S rRNA gene amplicon sequencing over the course of one year. Bacterial diversity in all three towers was broadly comparable to other freshwater systems, yet less diverse than natural environments; the most abundant taxa are also frequently found in freshwater or drinking water. While each cooling tower had a pronounced site-specific microbial community, taxa shared among all locations mainly included groups generally associated with biofilm formation. We also detected several groups related to known opportunistic pathogens, such as Legionella, Mycobacterium, and Pseudomonas species, albeit at generally low abundance. Although cooling towers represent a rather stable environment, microbial community composition was highly dynamic and subject to seasonal change. Protists are important members of the cooling tower water microbiome and known reservoirs for bacterial pathogens. Co-occurrence analysis of bacteria and protist taxa successfully captured known interactions between amoeba-associated bacteria and their hosts, and predicted a large number of additional relationships involving ciliates and other protists. Together, this study provides an unbiased and comprehensive overview of microbial diversity of cooling tower water basins, establishing a framework for investigating and assessing public health risks associated with these man-made freshwater environments.
Collapse
Affiliation(s)
- Han-Fei Tsao
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Ute Scheikl
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Craig Herbold
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Alexander Indra
- Department of Mycobacteriology and Clinical Molecular Biology, AGES, Vienna, Austria
| | - Julia Walochnik
- Institute of Specific Prophylaxis and Tropical Medicine, Medical University of Vienna, Vienna, Austria
| | - Matthias Horn
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria.
| |
Collapse
|
15
|
Castelli M, Serra V, Senra MVX, Basuri CK, Soares CAG, Fokin SI, Modeo L, Petroni G. The Hidden World of Rickettsiales Symbionts: "Candidatus Spectririckettsia obscura," a Novel Bacterium Found in Brazilian and Indian Paramecium caudatum. MICROBIAL ECOLOGY 2019; 77:748-758. [PMID: 30105505 DOI: 10.1007/s00248-018-1243-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
Symbioses between bacteria and eukaryotes are widespread and may have significant impact on the evolutionary history of symbiotic partners. The order Rickettsiales is a lineage of intracellular Alphaproteobacteria characterized by an obligate association with a wide range of eukaryotic hosts, including several unicellular organisms, such as ciliates and amoebas. In this work, we characterized the Rickettsiales symbionts associated with two different genotypes of the freshwater ciliate Paramecium caudatum originated from freshwater environments in distant geographical areas. Phylogenetic analyses based on 16S rRNA gene showed that the two symbionts are closely related to each other (99.4% identity), belong to the family Rickettsiaceae, but are far-related with respect to previously characterized Rickettsiales. Consequently, they were assigned to a new species of a novel genus, namely "Candidatus Spectririckettsia obscura." Screening on a database of short reads from 16S rRNA gene amplicon-based profiling studies confirmed that bacterial sequences related to the new symbiont are preferentially retrieved from freshwater environments, apparently with extremely scarce occurrence (< 0.1% positive samples). The present work provides new information on the still under-explored biodiversity of Rickettsiales, in particular those associated to ciliate host cells.
Collapse
Affiliation(s)
- Michele Castelli
- Romeo and Enrica Invernizzi Pediatric Research Center, Department of Biosciences, University of Milan, Milan, Italy.
- Department of Biology, University of Pisa, Pisa, Italy.
| | | | - Marcus V X Senra
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
- Departamento de Zoologia, Universidade Federal de Juiz de Fora, UFJF, Rio de Janeiro, Brazil
| | - Charan K Basuri
- Department of Zoology, Andhra University, Visakhapatnam, India
| | - Carlos A G Soares
- Departamento de Genética, Universidade Federal do Rio de Janeiro, UFRJ, Rio de Janeiro, Brazil
| | - Sergei I Fokin
- Department of Biology, University of Pisa, Pisa, Italy
- Department of Invertebrate Zoology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
16
|
Lanzoni O, Sabaneyeva E, Modeo L, Castelli M, Lebedeva N, Verni F, Schrallhammer M, Potekhin A, Petroni G. Diversity and environmental distribution of the cosmopolitan endosymbiont "Candidatus Megaira". Sci Rep 2019; 9:1179. [PMID: 30718604 PMCID: PMC6362216 DOI: 10.1038/s41598-018-37629-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Accepted: 12/11/2018] [Indexed: 02/08/2023] Open
Abstract
Members of the order Rickettsiales are often found in association with ciliated protists. An interesting case is the bacterial endosymbiont “Candidatus Megaira”, which is phylogenetically closely related to the pathogen Rickettsia. “Candidatus Megaira” was first described as an intracellular bacterium in several ciliate species. Since then it has been found in association with diverse evolutionary distantly-related hosts, among them other unicellular eukaryotes, and also algae, and metazoa, such as cnidarians. We provide the characterization of several new strains of the type species “Candidatus Megaira polyxenophila”, and the multidisciplinary description of a novel species, “Candidatus Megaira venefica”, presenting peculiar features, which highlight the diversity and variability of these widespread bacterial endosymbionts. Screening of the 16S rRNA gene short amplicon database and phylogenetic analysis of 16S rRNA gene hypervariable regions revealed the presence of further hidden lineages, and provided hints on the possibility that these bacteria may be horizontally transmitted among aquatic protists and metazoa. The phylogenetic reconstruction supports the existence of at least five different separate species-level clades of “Candidatus Megaira”, and we designed a set of specific probes allowing easy recognition of the four major clades of the genus.
Collapse
Affiliation(s)
| | - Elena Sabaneyeva
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | - Letizia Modeo
- Department of Biology, University of Pisa, Pisa, Italy
| | - Michele Castelli
- Centro Romeo ed Enrica Invernizzi Ricerca Pediatrica, Dipartimento di Bioscienze, Università degli studi di Milano, Milan, Italy
| | - Natalia Lebedeva
- Core Facilities Centre "Culture Collections of Microorganisms", Saint Petersburg State University, Saint Petersburg, Russia
| | - Franco Verni
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Alexey Potekhin
- Faculty of Biology, Saint Petersburg State University, Saint Petersburg, Russia
| | | |
Collapse
|
17
|
Alves-de-Souza C, Benevides TS, Menezes M, Jeanthon C, Guillou L. First report of vampyrellid predator-prey dynamics in a marine system. ISME JOURNAL 2018; 13:1110-1113. [PMID: 30523275 DOI: 10.1038/s41396-018-0329-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/21/2018] [Accepted: 11/23/2018] [Indexed: 11/09/2022]
Abstract
We report for the first time the in situ dynamics of a vampyrellid in a marine system. A high sampling frequency (twice-weekly) was applied in a tropical eutrophic lagoon (Rio de Janeiro, Brazil) for 5 years (2012-2016). The vampyrellid Hyalodiscus sp. specifically fed on the diatom Chaetoceros minimus during a short time window (~3 months), although the prey was intermittently detected as the dominant phytoplanktonic species over a longer period (~1 year). A classic Lotka-Volterra predator-prey dynamic was observed between the two partners, with a significant modification of the short-term oscillations of the prey. Specific abiotic preferences (i.e., relatively low temperature, intermediate salinity, and stratified conditions) associated with prey availability seemed to define this narrow temporal window of occurrence. Our results suggest that vampyrellids can be ecologically relevant in marine pelagic systems, with their impact on planktonic dynamics strongly depending on complex interactions between both biotic and abiotic factors.
Collapse
Affiliation(s)
- Catharina Alves-de-Souza
- Algal Resources Collection, MARBIONC, Center for Marine Sciences, University of North Carolina Wilmington, 5600 Marvin K. Moss Lane, Wilmington, NC, 28409, USA. .,Laboratório de Ficologia, Departamento de Botânica, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista S/N, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil.
| | - Tatiane S Benevides
- Laboratório de Ficologia, Departamento de Botânica, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista S/N, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Mariângela Menezes
- Laboratório de Ficologia, Departamento de Botânica, Museu Nacional/Universidade Federal do Rio de Janeiro, Quinta da Boa Vista S/N, São Cristóvão, Rio de Janeiro, RJ, 20940-040, Brazil
| | - Christian Jeanthon
- CNRS & Sorbonne Université, Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688, Roscoff, France
| | - Laure Guillou
- CNRS & Sorbonne Université, Station Biologique de Roscoff, Place Georges Teissier, CS90074, 29688, Roscoff, France
| |
Collapse
|
18
|
More K, Simpson AGB, Hess S. Two New Marine Species of Placopus (Vampyrellida, Rhizaria) That Perforate the Theca of Tetraselmis (Chlorodendrales, Viridiplantae). J Eukaryot Microbiol 2018; 66:560-573. [PMID: 30372564 DOI: 10.1111/jeu.12698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 09/18/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
Vampyrellids (Vampyrellida, Rhizaria) are a major group of predatory amoebae known primarily from freshwater and soil. Environmental sequence data indicate that there is also a considerable diversity of vampyrellids inhabiting marine ecosystems, but their phenotypic traits and ecology remain largely unexplored. We discovered algivorous vampyrellids of the filoflabellate morphotype in coastal habitats in Atlantic Canada, established cultures by single-cell isolation, and characterised three strains using light microscopy, SSU rRNA gene sequencing, feeding experiments and growth experiments at various salinities. These strains exhibit orange, discoid trophozoites with ventral filopodia, moving granules ("membranosomes"), and rolling locomotion, similar to freshwater species previously assigned to Hyalodiscus Hertwig & Lesser, but here moved to Placopus Schulze (due to homonymy with Hyalodiscus Ehrenberg). SSU rRNA gene phylogenies place our strains in two distinct positions within "lineage B3" (here referred to as Placopodidae). Based on these morphological, habitat and molecular data, we describe two new species, Placopus melkoniani sp. nov. and Placopus pusillus sp. nov., both of which feed on chlorophyte flagellates (Tetraselmis, Pyramimonas) and the cryptophyte Chroomonas. They perforate the theca of Tetraselmis to extract the protoplast, and thereby represent the first vampyrellids known to degrade the biochemically exotic cell wall of the Chlorodendrales (Chlorophyta, Viridiplantae).
Collapse
Affiliation(s)
- Kira More
- Department of Biology, Dalhousie University, Halifax, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Alastair G B Simpson
- Department of Biology, Dalhousie University, Halifax, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| | - Sebastian Hess
- Department of Biology, Dalhousie University, Halifax, 1355 Oxford Street, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
19
|
Yurchenko T, Ševčíková T, Přibyl P, El Karkouri K, Klimeš V, Amaral R, Zbránková V, Kim E, Raoult D, Santos LMA, Eliáš M. A gene transfer event suggests a long-term partnership between eustigmatophyte algae and a novel lineage of endosymbiotic bacteria. ISME JOURNAL 2018; 12:2163-2175. [PMID: 29880910 PMCID: PMC6092422 DOI: 10.1038/s41396-018-0177-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 03/21/2018] [Accepted: 04/14/2018] [Indexed: 11/09/2022]
Abstract
Rickettsiales are obligate intracellular bacteria originally found in metazoans, but more recently recognized as widespread endosymbionts of various protists. One genus was detected also in several green algae, but reports on rickettsialean endosymbionts in other algal groups are lacking. Here we show that several distantly related eustigmatophytes (coccoid algae belonging to Ochrophyta, Stramenopiles) are infected by Candidatus Phycorickettsia gen. nov., a new member of the family Rickettsiaceae. The genome sequence of Ca. Phycorickettsia trachydisci sp. nov., an endosymbiont of Trachydiscus minutus CCALA 838, revealed genomic features (size, GC content, number of genes) typical for other Rickettsiales, but some unusual aspects of the gene content were noted. Specifically, Phycorickettsia lacks genes for several components of the respiration chain, haem biosynthesis pathway, or c-di-GMP-based signalling. On the other hand, it uniquely harbours a six-gene operon of enigmatic function that we recently reported from plastid genomes of two distantly related eustigmatophytes and from various non-rickettsialean bacteria. Strikingly, the eustigmatophyte operon is closely related to the one from Phycorickettsia, suggesting a gene transfer event between the endosymbiont and host lineages in early eustigmatophyte evolution. We hypothesize an important role of the operon in the physiology of Phycorickettsia infection and a long-term eustigmatophyte-Phycorickettsia coexistence.
Collapse
Affiliation(s)
- Tatiana Yurchenko
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic.,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Tereza Ševčíková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Pavel Přibyl
- Centre for Phycology and Biorefinery Research Centre of Competence, Institute of Botany CAS, Dukelská 135, Třeboň, CZ-379 82, Czech Republic
| | - Khalid El Karkouri
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille cedex 5, 13385, France
| | - Vladimír Klimeš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Raquel Amaral
- Department of Life Sciences, Coimbra Collection of Algae (ACOI), University of Coimbra, Coimbra, 3000-456, Portugal
| | - Veronika Zbránková
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic
| | - Eunsoo Kim
- Sackler Institute for Comparative Genomics, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA.,Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| | - Didier Raoult
- Unité de Recherche en Maladies Infectieuses et Tropicales Emergentes (URMITE), UM63, CNRS7278, IRD198, INSERMU1095, Institut Hospitalo-Universitaire Méditerranée-Infection, Aix-Marseille Université, Faculté de Médecine, 27 boulevard Jean Moulin, Marseille cedex 5, 13385, France
| | - Lilia M A Santos
- Department of Life Sciences, Coimbra Collection of Algae (ACOI), University of Coimbra, Coimbra, 3000-456, Portugal
| | - Marek Eliáš
- Faculty of Science, Department of Biology and Ecology, Life Science Research Centre, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic. .,Faculty of Science, Institute of Environmental Technologies, University of Ostrava, Chittussiho 10, Ostrava, 710 00, Czech Republic.
| |
Collapse
|
20
|
Schrallhammer M, Castelli M, Petroni G. Phylogenetic relationships among endosymbiotic R-body producer: Bacteria providing their host the killer trait. Syst Appl Microbiol 2018; 41:213-220. [PMID: 29426636 DOI: 10.1016/j.syapm.2018.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 01/10/2018] [Accepted: 01/17/2018] [Indexed: 11/28/2022]
Abstract
R-body producing bacterial endosymbionts of Paramecium spp. transform their hosts into "killer" paramecia and provide them a selective advantage. This killer trait is connected to the presence of R-bodies, which are peculiar, tightly coiled protein ribbons capable of rapid unrolling. Based mainly on those two characteristics the respective obligate intracellular bacteria have been comprised in the genus Caedibacter and additional traits such as host species, subcellular localization, and R-body dimensions and mode of unrolling were used for species discrimination. Previous studies applying the full-cycle rRNA approach demonstrated the polyphyly of this assemblage. Following this approach, we obtained new sequences and in situ hybridizations for five strains of Caedibacter taeniospiralis and four strains associated to Caedibacter varicaedens and Caedibacter caryophilus. Detailed phylogenetic reconstructions confirm the association of C. taeniospiralis to Fastidiosibacteraceae and to Holosporales in case of the others. Therefore, we critically revise the taxonomy of the latter group. The high 16S rRNA gene sequence similarity among the type strains of Caedibacter varicaedens and C. caryophilus indicate that they should be classified within a single species for which we propose Caedimonas varicaedens comb. nov. owing to the priority of Caedibacter varicaedens. Moreover, we propose to establish the new family Caedimonadaceae fam. nov. to encompass Caedimonas varicaedens, "Ca. Paracaedimonas acanthamoebae" comb. nov. and "Ca. Nucleicultrix amoebiphila" within the order Holosporales.
Collapse
Affiliation(s)
- Martina Schrallhammer
- Institute of Biology II, Albert-Ludwigs University of Freiburg, 79104 Freiburg, Germany.
| | - Michele Castelli
- Department of Veterinary Medicine, University of Milan, 20133 Milan, Italy; Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Giulio Petroni
- Department of Biology, University of Pisa, 56126 Pisa, Italy
| |
Collapse
|
21
|
Sabaneyeva E, Castelli M, Szokoli F, Benken K, Lebedeva N, Salvetti A, Schweikert M, Fokin S, Petroni G. Host and symbiont intraspecific variability: The case of Paramecium calkinsi and "Candidatus Trichorickettsia mobilis". Eur J Protistol 2017; 62:79-94. [PMID: 29287245 DOI: 10.1016/j.ejop.2017.12.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 10/17/2017] [Accepted: 12/04/2017] [Indexed: 01/08/2023]
Abstract
Newly isolated strains of the ciliate Paramecium calkinsi and their cytoplasmic bacterial endosymbionts were characterized by a multidisciplinary approach, including live observation, ultrastructural investigation, and molecular analysis. Despite morphological resemblance, the characterized P. calkinsi strains showed a significant molecular divergence compared to conspecifics, possibly hinting for a cryptic speciation. The endosymbionts were clearly found to be affiliated to the species "Candidatus Trichorickettsia mobilis" (Rickettsiales, Rickettsiaceae), currently encompassing only bacteria retrieved in an obligate intracellular association with other ciliates. However, a relatively high degree of intraspecific divergence was observed as well, thus it was possible to split "Candidatus Trichorickettsia" into three subspecies, one of which represented so far only by the newly characterized endosymbionts of P. calkinsi. Other features distinguished the members of each different subspecies. In particular, the endosymbionts of P. calkinsi resided in the cytoplasm and possessed numerous peritrichous flagella, although no motility was evidenced, whereas their conspecifics in other hosts were either cytoplasmic and devoid of flagella, or macronuclear, displaying flagellar-driven motility. Moreover, contrarily to previously analyzed "Candidatus Trichorickettsia" hosts, infected P. calkinsi cells frequently became amicronucleate and demonstrated abnormal cell division, eventually leading to decline of the laboratory culture.
Collapse
Affiliation(s)
- E Sabaneyeva
- Department of Cytology and Histology, St. Petersburg State University, Russian Federation.
| | - M Castelli
- Department of Veterinary Medicine, University of Milan, Italy; Department of Biosciences, University of Milan, Italy
| | - F Szokoli
- Dipartimento di Biologia, Università di Pisa, Italy; Institut für Hydrobiologie, Technische Universität Dresden, Germany
| | - K Benken
- Core Facility Center for Microscopy and Microanalysis, St. Petersburg State University, Russian Federation
| | - N Lebedeva
- Core Facility Center for Cultivation of Microorganisms, St. Petersburg State University, Russian Federation
| | - A Salvetti
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Italy
| | - M Schweikert
- Institut of Biomaterials and Biomolecular Systems, Stuttgart University, Germany
| | - S Fokin
- Dipartimento di Biologia, Università di Pisa, Italy; Department of Invertebrate Zoology, St. Petersburg State University, Russian Federation
| | - G Petroni
- Dipartimento di Biologia, Università di Pisa, Italy.
| |
Collapse
|