1
|
Santhosh A, Neuhauser S. Host-Parasite interaction between brown algae and eukaryote biotrophic pathogens. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100306. [PMID: 39558936 PMCID: PMC11570863 DOI: 10.1016/j.crmicr.2024.100306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024] Open
Abstract
Brown algae belong to the class Phaeophyceae which are mainly multicellular, photosynthetic organisms, however they evolved independently from terrestrial plants, green and red algae. In the past years marine aquaculture involving brown algae has gained enormous momentum. In both natural environments and aquaculture, brown algae are susceptible to infection by various prokaryotic and eukaryotic parasites. While our understanding of host-parasite interactions in brown algae is gaining recognition, our understanding of how brown algae react to biotic stress remains incomplete. The objective of this review is to address research gaps in the field by providing a summary of what is already known about the response of brown algae to abiotic and biotic stress. The biology of eukaryotic zoosporic pathogens Maullinia ectocarpii, Eurychasma dicksonii, Anisolpidium ectocarpii is also discussed, as those parasites have been used in laboratory experiments to study diseases of brown algae. These studies often relied on parasites-infecting Ectocarpus siliculosus which has become a brown algal model organism to study host-pathogen interactions. Stress response in brown algae involves processes similar to hypersensitivity response, oxidative stress response, and activation of peroxidases, but also the production of blue fluorescent metabolites and deposition of β-1,3-glucan in the cell wall. Cell wall modification, expression of several defence related proteins, and secondary metabolite production also hold a crucial role in brown algal defence mechanism. Understanding host-pathogen interactions and the associated mechanisms is vital to discover strategies to control pathogens in the growing aquaculture sector.
Collapse
Affiliation(s)
- Anagha Santhosh
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Sigrid Neuhauser
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
2
|
Markussen Bjorbaekmo MF, Brodie J, Krabberød AK, Logares R, Fuss J, Fredriksen S, Wold-Dobbe A, Shalchian-Tabrizi K, Bass D. 18S rDNA gene metabarcoding of microeukaryotes and epi-endophytes in the holobiome of seven species of large brown algae. JOURNAL OF PHYCOLOGY 2023; 59:859-878. [PMID: 37726938 DOI: 10.1111/jpy.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 06/29/2023] [Accepted: 06/29/2023] [Indexed: 09/21/2023]
Abstract
Brown algae (Phaeophyceae) are habitat-forming species in coastal ecosystems and include kelp forests and seaweed beds that support a wide diversity of marine life. Host-associated microbial communities are an integral part of phaeophyte biology, and whereas the bacterial microbial partners have received considerable attention, the microbial eukaryotes associated with brown algae have hardly been studied. Here, we used broadly targeted "pan-eukaryotic" primers (metabarcoding) to investigate brown algal-associated eukaryotes (the eukaryome). Using this approach, we aimed to investigate the eukaryome of seven large brown algae that are important and common species in coastal ecosystems. We also aimed to assess whether these macroalgae harbor novel eukaryotic diversity and to ascribe putative functional roles to the host-associated eukaryome based on taxonomic affiliation and phylogenetic placement. We detected a significant diversity of microeukaryotic and algal lineages associated with the brown algal species investigated. The operational taxonomic units (OTUs) were taxonomically assigned to 10 of the eukaryotic major supergroups, including taxonomic groups known to be associated with seaweeds as epibionts, endobionts, parasites, and commensals. Additionally, we revealed previously unrecorded sequence types, including novel phaeophyte OTUs, particularly in the Fucus spp. samples, that may represent fucoid genomic variants, sequencing artifacts, or undescribed epi-/endophytes. Our results provide baseline data and technical insights that will be useful for more comprehensive seaweed eukaryome studies investigating the evidently lineage-rich and functionally diverse symbionts of brown algae.
Collapse
Affiliation(s)
- Marit F Markussen Bjorbaekmo
- Norwegian Institute for Water Research (NIVA), Section for Marine Biology, Oslo, Norway
- Natural History Museum (NHM), Science, London, UK
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | | | - Anders K Krabberød
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Ramiro Logares
- Department of Marine Biology and Oceanography, Institut de Ciències del Mar (CSIC), Barcelona, Catalonia, Spain
| | - Janina Fuss
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Stein Fredriksen
- Department of Biosciences, Section for Aquatic Biology and Toxicology (AQUA), University of Oslo, Oslo, Norway
| | - Anders Wold-Dobbe
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - Kamran Shalchian-Tabrizi
- Department of Biosciences, Section for Genetics and Evolutionary Biology (EVOGENE) and Centre for Integrative Microbial Evolution (CIME), University of Oslo, Oslo, Norway
| | - David Bass
- Natural History Museum (NHM), Science, London, UK
- Centre for Environment, Fisheries and Aquaculture Science (CEFAS), Dorset, UK
- Sustainable Aquaculture Futures, Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| |
Collapse
|
3
|
Murúa P, Garvetto A, Egan S, Gachon CMM. The Reemergence of Phycopathology: When Algal Biology Meets Ecology and Biosecurity. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:231-255. [PMID: 37253694 DOI: 10.1146/annurev-phyto-020620-120425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Viruses, bacteria, and eukaryotic symbionts interact with algae in a variety of ways to cause disease complexes, often shaping marine and freshwater ecosystems. The advent of phyconomy (a.k.a. seaweed agronomy) represents a need for a greater understanding of algal disease interactions, where underestimated cryptic diversity and lack of phycopathological basis are prospective constraints for algal domestication. Here, we highlight the limited yet increasing knowledge of algal pathogen biodiversity and the ecological interaction with their algal hosts. Finally, we discuss how ecology and cultivation experience contribute to and reinforce aquaculture practice, with the potential to reshape biosecurity policies of seaweed cultivation worldwide.
Collapse
Affiliation(s)
- Pedro Murúa
- Instituto de Acuicultura, Universidad Austral de Chile-Sede Puerto Montt, Los Lagos, Chile;
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Andrea Garvetto
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Institute of Microbiology, Universität Innsbruck, Innsbruck, Tyrol, Austria
| | - Suhelen Egan
- Centre for Marine Science and Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, Australia
| | - Claire M M Gachon
- Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
- Muséum National d'Histoire Naturelle, CNRS, Paris, France
| |
Collapse
|
4
|
Garvetto A, Murúa P, Kirchmair M, Salvenmoser W, Hittorf M, Ciaghi S, Harikrishnan SL, Gachon CMM, Burns JA, Neuhauser S. Phagocytosis underpins the biotrophic lifestyle of intracellular parasites in the class Phytomyxea (Rhizaria). THE NEW PHYTOLOGIST 2023; 238:2130-2143. [PMID: 36810975 PMCID: PMC10953367 DOI: 10.1111/nph.18828] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 02/06/2023] [Indexed: 05/04/2023]
Abstract
Phytomyxea are intracellular biotrophic parasites infecting plants and stramenopiles, including the agriculturally impactful Plasmodiophora brassicae and the brown seaweed pathogen Maullinia ectocarpii. They belong to the clade Rhizaria, where phagotrophy is the main mode of nutrition. Phagocytosis is a complex trait of eukaryotes, well documented for free-living unicellular eukaryotes and specific cellular types of animals. Data on phagocytosis in intracellular, biotrophic parasites are scant. Phagocytosis, where parts of the host cell are consumed at once, is seemingly at odds with intracellular biotrophy. Here we provide evidence that phagotrophy is part of the nutritional strategy of Phytomyxea, using morphological and genetic data (including a novel transcriptome of M. ectocarpii). We document intracellular phagocytosis in P. brassicae and M. ectocarpii by transmission electron microscopy and fluorescent in situ hybridization. Our investigations confirm molecular signatures of phagocytosis in Phytomyxea and hint at a small specialized subset of genes used for intracellular phagocytosis. Microscopic evidence confirms the existence of intracellular phagocytosis, which in Phytomyxea targets primarily host organelles. Phagocytosis seems to coexist with the manipulation of host physiology typical of biotrophic interactions. Our findings resolve long debated questions on the feeding behaviour of Phytomyxea, suggesting an unrecognized role for phagocytosis in biotrophic interactions.
Collapse
Affiliation(s)
- Andrea Garvetto
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Pedro Murúa
- Laboratorio de Macroalgas, Instituto de AcuiculturaUniversidad Austral de ChilePuerto Montt5480000Chile
| | - Martin Kirchmair
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Willibald Salvenmoser
- Institute of ZoologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Michaela Hittorf
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Stefan Ciaghi
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| | - Srilakshmy L. Harikrishnan
- Centre for Plant Systems BiologyVIBZwijnaarde 71Ghent9052Belgium
- Department of Plant Biotechnology and BioinformaticsGhent UniversityZwijnaarde 71Ghent9052Belgium
| | - Claire M. M. Gachon
- Muséum National d'Histoire Naturelle, UMR 7245, CNRS CP 2657 rue Cuvier75005ParisFrance
- Scottish Association for Marine ScienceScottish Marine InstituteDunbegObanPA37 1QAUK
| | - John A. Burns
- Bigelow Laboratory for Ocean Sciences60 Bigelow Dr.East BoothbayME04544USA
| | - Sigrid Neuhauser
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstraße 25Innsbruck6020TyrolAustria
| |
Collapse
|
5
|
Ludwig-Müller J. What Can We Learn from -Omics Approaches to Understand Clubroot Disease? Int J Mol Sci 2022; 23:ijms23116293. [PMID: 35682976 PMCID: PMC9180986 DOI: 10.3390/ijms23116293] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/04/2023] Open
Abstract
Clubroot is one of the most economically significant diseases worldwide. As a result, many investigations focus on both curing the disease and in-depth molecular studies. Although the first transcriptome dataset for the clubroot disease describing the clubroot disease was published in 2006, many different pathogen-host plant combinations have only recently been investigated and published. Articles presenting -omics data and the clubroot pathogen Plasmodiophora brassicae as well as different host plants were analyzed to summarize the findings in the richness of these datasets. Although genome data for the protist have only recently become available, many effector candidates have been identified, but their functional characterization is incomplete. A better understanding of the life cycle is clearly required to comprehend its function. While only a few proteome studies and metabolome analyses were performed, the majority of studies used microarrays and RNAseq approaches to study transcriptomes. Metabolites, comprising chemical groups like hormones were generally studied in a more targeted manner. Furthermore, functional approaches based on such datasets have been carried out employing mutants, transgenic lines, or ecotypes/cultivars of either Arabidopsis thaliana or other economically important host plants of the Brassica family. This has led to new discoveries of potential genes involved in disease development or in (partial) resistance or tolerance to P. brassicae. The overall contribution of individual experimental setups to a larger picture will be discussed in this review.
Collapse
|
6
|
Amponsah J, Tegg RS, Thangavel T, Wilson CR. Moments of weaknesses - exploiting vulnerabilities between germination and encystment in the Phytomyxea. Biol Rev Camb Philos Soc 2021; 96:1603-1615. [PMID: 33821562 DOI: 10.1111/brv.12717] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/23/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Attempts at management of diseases caused by protozoan plant parasitic Phytomyxea have often been ineffective. The dormant life stage is characterised by long-lived highly robust resting spores that are largely impervious to chemical treatment and environmental stress. This review explores some life stage weaknesses and highlights possible control measures associated with resting spore germination and zoospore taxis. With phytomyxid pathogens of agricultural importance, zoospore release from resting spores is stimulated by plant root exudates. On germination, the zoospores are attracted to host roots by chemoattractant components of root exudates. Both the relatively metabolically inactive resting spore and motile zoospore need to sense the chemical environment to determine the suitability of these germination stimulants or attractants respectively, before they can initiate an appropriate response. Blocking such sensing could inhibit resting spore germination or zoospore taxis. Conversely, the short life span and the vulnerability of zoospores to the environment require them to infect their host within a few hours after release. Identifying a mechanism or conditions that could synchronise resting spore germination in the absence of host plants could lead to diminished pathogen populations in the field.
Collapse
Affiliation(s)
- Jonathan Amponsah
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St Johns Avenue, New Town, TAS, 7008, Australia.,Biotechnology and Nuclear Agricultural Research Institute Centre, Ghana Atomic Energy Commission, P.O. Box LG 80, Legon, Accra, Ghana
| | - Robert S Tegg
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St Johns Avenue, New Town, TAS, 7008, Australia
| | - Tamilarasan Thangavel
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St Johns Avenue, New Town, TAS, 7008, Australia
| | - Calum R Wilson
- Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, 13 St Johns Avenue, New Town, TAS, 7008, Australia
| |
Collapse
|
7
|
Kolátková V, Čepička I, Hoffman R, Vohník M. Marinomyxa Gen. Nov. Accommodates Gall-Forming Parasites of the Tropical to Subtropical Seagrass Genus Halophila and Constitutes a Novel Deep-Branching Lineage Within Phytomyxea (Rhizaria: Endomyxa). MICROBIAL ECOLOGY 2021; 81:673-686. [PMID: 33021677 DOI: 10.1007/s00248-020-01615-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 09/28/2020] [Indexed: 06/11/2023]
Abstract
Marine representatives of Phytomyxea (SAR: Rhizaria: Endomyxa), a peculiar class of obligate endobiotic parasites, are a greatly understudied ecological group of protists infecting many algal, diatom, and seagrass species. Very little is known about the actual diversity, ecology, and pathogenic potential of these organisms and their taxonomic treatment in many cases follows outdated morphotaxonomic concepts. Here we focused on resolving the phylogenetic relations of the phytomyxean parasites of the widespread seagrass genus Halophila. We report the first finding of Plasmodiophora halophilae, the parasite of ovate-leaf Halophila species, after more than 100 years since its original description in 1913. We provide additional information on its anatomy, morphology, distribution, and host range, together with a phylogenetic evidence that it is congeneric with the recently rediscovered species infecting the invasive seagrass Halophila stipulacea in the Mediterranean Sea. Despite the previously hypothesized affiliation of the latter to Tetramyxa, our phylogenetic analyses of the 18S rRNA gene place Tetramyxa parasitica (a parasite of brackish water phanerogams and the type species of the genus) in the freshwater/terrestrial phytomyxean order Plasmodiophorida and reveal that phytomyxids associated with Halophila spp. form a separate deep-branching clade within the class proposed here as Marinomyxa gen. nov. We further argue that M. marina infecting H. stipulacea is most likely a species-specific parasite and implies their comigration through the Suez Canal.
Collapse
Affiliation(s)
- Viktorie Kolátková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Razy Hoffman
- The Steinhardt Museum of Natural History and Israel National Center for Biodiversity Studies, Tel Aviv University, Tel Aviv, Israel
| | - Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
8
|
Hittorf M, Letsch‐Praxmarer S, Windegger A, Bass D, Kirchmair M, Neuhauser S. Revised Taxonomy and Expanded Biodiversity of the Phytomyxea (Rhizaria, Endomyxa). J Eukaryot Microbiol 2020; 67:648-659. [PMID: 32654223 PMCID: PMC7756720 DOI: 10.1111/jeu.12817] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 05/21/2020] [Accepted: 06/25/2020] [Indexed: 12/27/2022]
Abstract
Phytomyxea (phytomyxids) is a group of obligate biotrophic pathogens belonging to the Rhizaria. Some phytomyxids are well studied and include known plant pathogens such as Plasmodiophora brassicae, the causal agent of clubroot disease. Despite this economic importance, the taxonomy and biodiversity of this group are largely cryptic, with many species described in the premolecular area. Some of these species were key for establishing the morphotaxonomic concepts that define most genera to this day, but systematic efforts to include and integrate those species into molecular studies are still lacking. The aim of this study was to expand our understanding of phytomyxid biodiversity in terrestrial environments. Thirty-eight environmental samples from habitats in which novel and known diversity of Phytomyxea was expected were analysed. We were able to generate 18S rRNA sequences from Ligniera verrucosa, a species which is well defined based on ultrastructure. Phylogenetic analyses of the collected sequences rendered the genera Lignera, Plasmodiophora and Spongospora polyphyletic, and identified two novel and apparently diverse lineages (clade 17, clade 18). Based on these findings and on data from previous studies, we formally establish the new genera Pseudoligniera n. gen. for L. verrucosa,Hillenburgia n. gen. for Spongospora nasturtii and revert Plasmodiophora diplantherae to its original name Ostenfeldiella diplantherae.
Collapse
Affiliation(s)
- Michaela Hittorf
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstr. 256020InnsbruckAustria
| | | | - Alexandra Windegger
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstr. 256020InnsbruckAustria
| | - David Bass
- Department of Life SciencesThe Natural History MuseumCromwell RoadLondonSW7 5BDUnited Kingdom
- Centre for Environment, Fisheries and Aquaculture Science (Cefas)Barrack Road, The NotheWeymouthDT4 8UBUnited Kingdom
| | - Martin Kirchmair
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstr. 256020InnsbruckAustria
| | - Sigrid Neuhauser
- Institute of MicrobiologyUniversity of InnsbruckTechnikerstr. 256020InnsbruckAustria
| |
Collapse
|
9
|
Badstöber J, Gachon CMM, Ludwig-Müller J, Sandbichler AM, Neuhauser S. Demystifying biotrophs: FISHing for mRNAs to decipher plant and algal pathogen-host interaction at the single cell level. Sci Rep 2020; 10:14269. [PMID: 32868853 PMCID: PMC7459097 DOI: 10.1038/s41598-020-70884-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
Plant-pathogen interactions follow spatial and temporal developmental dynamics where gene expression in pathogen and host undergo crucial changes. Therefore, it is of great interest to detect, quantify and localise where and when key genes are active to understand these processes. Many pathosystems are not accessible for genetic amendments or other spatially-resolved gene expression monitoring methods. Here, we adapt single molecule FISH techniques to demonstrate the presence and activity of mRNAs at the single-cell level using phytomyxids in their plant and algal host in lab and field material. This allowed us to monitor and quantify the expression of genes from the clubroot pathogen Plasmodiophora brassicae, several species of its Brassica hosts, and of several brown algae, including the genome model Ectocarpus siliculosus, infected with the phytomyxid Maullinia ectocarpii. We show that mRNAs are localised along a spatiotemporal gradient, thus providing a proof-of-concept of the usefulness of single-molecule FISH to increase knowledge about the interactions between plants, algae and phytomyxids. The methods used are easily applicable to any interaction between microbes and their algal or plant host, and have therefore the potential to rapidly increase our understanding of key, spatially- and temporally-resolved processes underpinning complex plant-microbe interactions.
Collapse
Affiliation(s)
- Julia Badstöber
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, PA37 1QA, UK
- UMR 7245 - Molécules de Communication et Adaptation des Micro-organismes, Muséum National d'Histoire Naturelle, CNRS, Paris, 75005, France
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, 01217, Dresden, Germany
| | | | - Sigrid Neuhauser
- Institute of Microbiology, University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
10
|
Murúa P, Müller DG, Etemadi M, van West P, Gachon CMM. Host and pathogen autophagy are central to the inducible local defences and systemic response of the giant kelp Macrocystis pyrifera against the oomycete pathogen Anisolpidium ectocarpii. THE NEW PHYTOLOGIST 2020; 226:1445-1460. [PMID: 31955420 PMCID: PMC7317505 DOI: 10.1111/nph.16438] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 01/08/2020] [Indexed: 05/20/2023]
Abstract
Kelps are key primary producers of cold and temperate marine coastal ecosystems and exhibit systemic defences against pathogens. Yet, the cellular mechanisms underpinning their immunity remain to be elucidated. We investigated the time course of infection of the kelp Macrocystis pyrifera by the oomycete Anisolpidium ectocarpii using TEM, in vivo autophagy markers and autophagy inhibitors. Over several infection cycles, A. ectocarpii undergoes sequential physiological shifts sensitive to autophagy inhibitors. Initially lipid-rich, pathogen thalli become increasingly lipid-depleted; they subsequently tend to become entirely abortive, irrespective of their lipid content. Moreover, infected algal cells mount local defences and can directly eliminate the pathogen by xenophagy. Finally, autophagy-dependent plastid recycling is induced in uninfected host cells. We demonstrate the existence of local, inducible autophagic processes both in the pathogen and infected host cells, which result in the restriction of pathogen propagation. We also show the existence of a systemic algal response mediated by autophagy. We propose a working model accounting for all our observations, whereby the outcome of the algal-pathogen interaction (i.e. completion or not of the pathogen life cycle) is dictated by the induction, and possibly the mutual hijacking, of the host and pathogen autophagy machineries.
Collapse
Affiliation(s)
- Pedro Murúa
- Aberdeen Oomycete LaboratoryInternational Centre for Aquaculture Research and DevelopmentUniversity of AberdeenForesterhillAberdeenAB25 2ZDUK
- The Scottish Association for Marine ScienceScottish Marine InstituteObanPA37 1QAUK
| | - Dieter G. Müller
- Fachbereich Biologie der Universität KonstanzD‐78457KonstanzGermany
| | - Mohammad Etemadi
- Institute of MicrobiologyUniversity of InnsbruckA‐6020InnsbruckTyrolAustria
| | - Pieter van West
- Aberdeen Oomycete LaboratoryInternational Centre for Aquaculture Research and DevelopmentUniversity of AberdeenForesterhillAberdeenAB25 2ZDUK
| | - Claire M. M. Gachon
- The Scottish Association for Marine ScienceScottish Marine InstituteObanPA37 1QAUK
- UMR 7245 - Molécules de Communication et Adaptation des Micro-organismesMuséum National d'Histoire NaturelleCP 54, 57 rue Cuvier75005ParisFrance
| |
Collapse
|
11
|
Kolátková V, Čepička I, Gargiulo GM, Vohník M. Enigmatic Phytomyxid Parasite of the Alien Seagrass Halophila stipulacea: New Insights into Its Ecology, Phylogeny, and Distribution in the Mediterranean Sea. MICROBIAL ECOLOGY 2020; 79:631-643. [PMID: 31664477 DOI: 10.1007/s00248-019-01450-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Marine phytomyxids represent often overlooked obligate biotrophic parasites colonizing diatoms, brown algae, and seagrasses. An illustrative example of their enigmatic nature is the phytomyxid infecting the seagrass Halophila stipulacea (a well-known Lessepsian migrant from the Indo-Pacific to the Mediterranean Sea). In the Mediterranean, the occurrence of this phytomyxid was first described in 1995 in the Strait of Messina (southern Italy) and the second time in 2017 in the Aegean coast of Turkey. Here we investigated, using scuba diving, stereomicroscopy, light and scanning electron microscopy, and molecular methods, whether the symbiosis is still present in southern Italy, its distribution in this region and its relation to the previous reports. From the total of 16 localities investigated, the symbiosis has only been found at one site. A seasonal pattern was observed with exceptionally high abundance (> 40% of the leaf petioles colonized) in September 2017, absence of the symbiosis in May/June 2018, and then again high infection rates (~ 30%) in September 2018. In terms of anatomy and morphology as well as resting spore dimensions and arrangement, the symbiosis seems to be identical to the preceding observations in the Mediterranean. According to the phylogenetic analyses of the 18S rRNA gene, the phytomyxid represents the first characterized member of the environmental clade "TAGIRI-5". Our results provide new clues about its on-site ecology (incl. possible dispersal mechanisms), hint that it is rare but established in the Mediterranean, and encourage further research into its distribution, ecophysiology, and taxonomy.
Collapse
Affiliation(s)
- Viktorie Kolátková
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic.
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Gaetano Maurizio Gargiulo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Martin Vohník
- Department of Mycorrhizal Symbioses, Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
12
|
Murúa P, Patiño DJ, Leiva FP, Muñoz L, Müller DG, Küpper FC, Westermeier R, Peters AF. Gall disease in the alginophyte Lessonia berteroana: A pathogenic interaction linked with host adulthood in a seasonal-dependant manner. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
13
|
Abraham RE, Su P, Puri M, Raston CL, Zhang W. Optimisation of biorefinery production of alginate, fucoidan and laminarin from brown seaweed Durvillaea potatorum. ALGAL RES 2019. [DOI: 10.1016/j.algal.2018.101389] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
14
|
Vallet M, Strittmatter M, Murúa P, Lacoste S, Dupont J, Hubas C, Genta-Jouve G, Gachon CMM, Kim GH, Prado S. Chemically-Mediated Interactions Between Macroalgae, Their Fungal Endophytes, and Protistan Pathogens. Front Microbiol 2018; 9:3161. [PMID: 30627120 PMCID: PMC6309705 DOI: 10.3389/fmicb.2018.03161] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/14/2022] Open
Abstract
Filamentous fungi asymptomatically colonize the inner tissues of macroalgae, yet their ecological roles remain largely underexplored. Here, we tested if metabolites produced by fungal endophytes might protect their host against a phylogenetically broad spectrum of protistan pathogens. Accordingly, the cultivable fungal endophytes of four brown algal species were isolated and identified based on LSU and SSU sequencing. The fungal metabolomes were tested for their ability to reduce the infection by protistan pathogens in the algal model Ectocarpus siliculosus. The most active metabolomes effective against the oomycetes Eurychasma dicksonii and Anisolpidium ectocarpii, and the phytomixid Maullinia ectocarpii were further characterized chemically. Several pyrenocines isolated from Phaeosphaeria sp. AN596H efficiently inhibited the infection by all abovementioned pathogens. Strikingly, these compounds also inhibited the infection of nori (Pyropia yezoensis) against its two most devastating oomycete pathogens, Olpidiopsis pyropiae, and Pythium porphyrae. We thus demonstrate that fungal endophytes associated with brown algae produce bioactive metabolites which might confer protection against pathogen infection. These results highlight the potential of metabolites to finely-tune the outcome of molecular interactions between algae, their endophytes, and protistan pathogens. This also provide proof-of-concept toward the applicability of such metabolites in marine aquaculture to control otherwise untreatable diseases.
Collapse
Affiliation(s)
- Marine Vallet
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, CP 54, Paris, France
| | - Martina Strittmatter
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Pedro Murúa
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Sandrine Lacoste
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Joëlle Dupont
- Institut Systématique Evolution Biodiversité (ISYEB), Muséum National d'Histoire Naturelle, CNRS, Sorbonne Université, EPHE, Paris, France
| | - Cedric Hubas
- Unité Biologie des organismes et écosystèmes aquatiques (UMR BOREA), Muséum national d'Histoire Naturelle, Sorbonne Université, Université de Caen Normandie, Université des Antilles, CNRS, IRD; Station Marine de Concarneau, Concarneau, France
| | - Gregory Genta-Jouve
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, CP 54, Paris, France.,Université Paris Descartes, Laboratoire de Chimie-Toxicologie Analytique et Cellulaire (C-TAC), UMR CNRS 8638, COMETE, Paris, France
| | - Claire M M Gachon
- The Scottish Association for Marine Science, Scottish Marine Institute, Oban, United Kingdom
| | - Gwang Hoon Kim
- Department of Biology, Kongju National University, Kongju, South Korea
| | - Soizic Prado
- Muséum National d'Histoire Naturelle, Unité Molécules de Communication et Adaptation des Micro-organismes, UMR 7245, CP 54, Paris, France
| |
Collapse
|
15
|
Elliott JK, Simpson H, Teesdale A, Replogle A, Elliott M, Coats K, Chastagner G. A Novel Phagomyxid Parasite Produces Sporangia in Root Hair Galls of Eelgrass (Zostera marina). Protist 2018; 170:64-81. [PMID: 30710862 DOI: 10.1016/j.protis.2018.12.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 11/15/2018] [Accepted: 12/02/2018] [Indexed: 10/27/2022]
Abstract
The objective of this study was to identify the parasite causing the formation of root hair galls on eelgrass (Zostera marina) in Puget Sound, WA. Microscopic and molecular analyses revealed that a novel protist formed plasmodia that developed into sporangia in root hair tip galls and released biflagellate swimming zoospores. Root hair galls were also observed in the basal section of root hairs, and contained plasmodia or formed thick-walled structures filled with cells (resting spores). Phylogenetic analyses of 18S rDNA sequence data obtained from cells in sporangia indicated that the closest relative of the parasite with a known taxonomic identification was Plasmodiophora diplantherae (86.9% sequence similarity), a phagomyxid parasite that infects the seagrass Halodule spp. To determine the local geographic distribution of the parasite, root and soil samples were taken from four eelgrass populations in Puget Sound and analyzed for root hair galls and parasite DNA using a newly designed qPCR protocol. The percent of root hairs with galls and amount of parasite DNA in roots and sediment varied among the four eelgrass populations. Future studies are needed to establish the taxonomy of the parasite, its effects on Z. marina, and the factors that determine its distribution and abundance.
Collapse
Affiliation(s)
- Joel K Elliott
- Department of Biology, University of Puget Sound, Tacoma, WA 98406, USA.
| | - Hunter Simpson
- Department of Biology, University of Puget Sound, Tacoma, WA 98406, USA
| | - Alex Teesdale
- Department of Biology, University of Puget Sound, Tacoma, WA 98406, USA
| | - Amy Replogle
- Department of Biology, University of Puget Sound, Tacoma, WA 98406, USA
| | - Marianne Elliott
- Department of Plant Pathology, Washington State University Research & Extension Center, Puyallup, WA 98371, USA
| | - Kathryn Coats
- Department of Plant Pathology, Washington State University Research & Extension Center, Puyallup, WA 98371, USA
| | - Gary Chastagner
- Department of Plant Pathology, Washington State University Research & Extension Center, Puyallup, WA 98371, USA
| |
Collapse
|
16
|
What has happened to the “aquatic phycomycetes” (sensu Sparrow)? Part II: Shared properties of zoosporic true fungi and fungus-like microorganisms. FUNGAL BIOL REV 2018. [DOI: 10.1016/j.fbr.2017.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|