1
|
Jeon BS, Park MG. Morphology, phylogeny, and host range of the novel early-diverging oomycete Sirolpidium dinoletiferum sp. nov. parasitizing marine dinoflagellates. HARMFUL ALGAE 2024; 132:102567. [PMID: 38331547 DOI: 10.1016/j.hal.2024.102567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/29/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
Oomycetes are fungus-like heterotrophic organisms with a broad environmental distribution, including marine, freshwater, and terrestrial habitats. They function as saprotrophs that use the remains of other organisms or as parasites of a variety of eukaryotes, including protists, diatoms, dinoflagellates, macroalgae, plants, fungi, animals, and even other oomycetes. Among the protist hosts, the taxonomy, morphology, and phylogenetic positions of the oomycete parasitoids of diatoms have been well studied; however, this information concerning the oomycete parasitoids of dinoflagellates is poorly understood. During intensive sampling along the east and west coasts of Korea in May and October 2019, a new species of oomycetes was discovered and two strains of the new parasitoid were successfully established in cultures. The new oomycete parasitoid penetrated the dinoflagellate host cell and developed to form a sporangium, which was very similar to the perkinsozoan parasitoids that infect marine dinoflagellates. The most distinctive morphological feature of the new parasitoid was a central large vacuole forming several long discharge tubes. The molecular phylogenetic tree inferred based on the small subunit (SSU) ribosomal DNA (rDNA) revealed that the new parasitoid forms a distinct branch unrelated to other described species belonging to early-diverging oomycetes. It clustered with species belonging to the genus Sirolpidium with strong support values in the cytochrome c oxidase subunit 2 (cox2) tree. Cross-infection experiments showed that infections by the new parasitoid occurred in only six genera belonging to dinoflagellates among the protists tested in this study. Based on the morphological and molecular data obtained in this study, we propose to introduce a new species, Sirolpidium dinoletiferum sp. nov., for this novel parasitoid, conservatively within the genus Sirolpidium.
Collapse
Affiliation(s)
- Boo Seong Jeon
- Research Institute for Basic Sciences, Chonnam National University, Gwangju 61186, Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
2
|
Jeon BS, Park MG. Comparative biological traits of perkinsozoan parasitoids infecting marine dinoflagellates. HARMFUL ALGAE 2023; 123:102390. [PMID: 36894211 DOI: 10.1016/j.hal.2023.102390] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/16/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
The number of perkinsozoan parasitoid species known to infect dinoflagellates has increased to 11 over the last two decades. However, most of the current knowledge about the autecology of perkinsozoan parasitoids of dinoflagellates has derived from studies of one or two species, thereby making it difficult to directly compare their biological traits at the same time and even their potentials as biological control agents if they are to be exploited to mitigate harmful dinoflagellate blooms in the field. This study investigated total generation time, the number of zoospores produced per sporangium, zoospore size, swimming speed, parasite prevalence, zoospore survival and success rate, and host range and susceptibility for five perkinsozoan parasitoids. Four of the species (Dinovorax pyriformis, Tuberlatum coatsi, Parvilucifera infectans, and P. multicavata) were from the family Parviluciferaceae and one (Pararosarium dinoexitiosum) was from the family Pararosariidae, with dinoflagellate Alexandrium pacificum employed as a common host. Distinct differences in the biological traits of the five perkinsozoan parasitoid species were found, suggesting that the fitness of these parasitoids for the common host species differs. These results thus offer useful background information for the understanding of the impacts of parasitoids on the natural host population and for the design of numerical modeling including the host-parasitoid systems and biocontrol experiments in the field.
Collapse
Affiliation(s)
- Boo Seong Jeon
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
3
|
Kavagutti VS, Bulzu PA, Chiriac CM, Salcher MM, Mukherjee I, Shabarova T, Grujčić V, Mehrshad M, Kasalický V, Andrei AS, Jezberová J, Seďa J, Rychtecký P, Znachor P, Šimek K, Ghai R. High-resolution metagenomic reconstruction of the freshwater spring bloom. MICROBIOME 2023; 11:15. [PMID: 36698172 PMCID: PMC9878933 DOI: 10.1186/s40168-022-01451-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/16/2022] [Indexed: 05/16/2023]
Abstract
BACKGROUND The phytoplankton spring bloom in freshwater habitats is a complex, recurring, and dynamic ecological spectacle that unfolds at multiple biological scales. Although enormous taxonomic shifts in microbial assemblages during and after the bloom have been reported, genomic information on the microbial community of the spring bloom remains scarce. RESULTS We performed a high-resolution spatio-temporal sampling of the spring bloom in a freshwater reservoir and describe a multitude of previously unknown taxa using metagenome-assembled genomes of eukaryotes, prokaryotes, and viruses in combination with a broad array of methodologies. The recovered genomes reveal multiple distributional dynamics for several bacterial groups with progressively increasing stratification. Analyses of abundances of metagenome-assembled genomes in concert with CARD-FISH revealed remarkably similar in situ doubling time estimates for dominant genome-streamlined microbial lineages. Discordance between quantitations of cryptophytes arising from sequence data and microscopic identification suggested the presence of hidden, yet extremely abundant aplastidic cryptophytes that were confirmed by CARD-FISH analyses. Aplastidic cryptophytes are prevalent throughout the water column but have never been considered in prior models of plankton dynamics. We also recovered the first metagenomic-assembled genomes of freshwater protists (a diatom and a haptophyte) along with thousands of giant viral genomic contigs, some of which appeared similar to viruses infecting haptophytes but owing to lack of known representatives, most remained without any indication of their hosts. The contrasting distribution of giant viruses that are present in the entire water column to that of parasitic perkinsids residing largely in deeper waters allows us to propose giant viruses as the biological agents of top-down control and bloom collapse, likely in combination with bottom-up factors like a nutrient limitation. CONCLUSION We reconstructed thousands of genomes of microbes and viruses from a freshwater spring bloom and show that such large-scale genome recovery allows tracking of planktonic succession in great detail. However, integration of metagenomic information with other methodologies (e.g., microscopy, CARD-FISH) remains critical to reveal diverse phenomena (e.g., distributional patterns, in situ doubling times) and novel participants (e.g., aplastidic cryptophytes) and to further refine existing ecological models (e.g., factors affecting bloom collapse). This work provides a genomic foundation for future approaches towards a fine-scale characterization of the organisms in relation to the rapidly changing environment during the course of the freshwater spring bloom. Video Abstract.
Collapse
Affiliation(s)
- Vinicius S Kavagutti
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic.
| | - Paul-Adrian Bulzu
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Cecilia M Chiriac
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Indranil Mukherjee
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Tanja Shabarova
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Vesna Grujčić
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Maliheh Mehrshad
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Present address: Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, 750 07, Sweden
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Adrian-Stefan Andrei
- Limnological Station, Microbial Evogenomics Lab (MiEL), University of Zurich, Kilchberg, Switzerland
| | - Jitka Jezberová
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Jaromir Seďa
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Pavel Rychtecký
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic
| | - Rohit Ghai
- Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 370 05, České Budějovice, Czech Republic.
| |
Collapse
|
4
|
Jeon BS, Park MG. A Novel Parasitoid of Marine Dinoflagellates, Pararosarium dinoexitiosum gen. et sp. nov. (Perkinsozoa, Alveolata), Showing Characteristic Beaded Sporocytes. Front Microbiol 2021; 12:748092. [PMID: 34912310 PMCID: PMC8667275 DOI: 10.3389/fmicb.2021.748092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/09/2021] [Indexed: 11/13/2022] Open
Abstract
The phylum Perkinsozoa is known as an exclusively parasitic group within alveolates and is widely distributed in various aquatic environments from marine to freshwater environments. Nonetheless, their morphology, life cycle, the identity of the host, and physiological characteristics remain still poorly understood. During intensive sampling along the west coast of Korea in October and November 2017, a new parasitoid, which shares several characteristics with the extant families Perkinsidae and Parviluciferaceae, was discovered and three strains of the new parasitoid were successfully established in cultures. Cross-infection experiments showed that among the examined planktonic groups, only dinoflagellates were susceptible to the new parasitoid, with infections observed in species belonging to eight genera. Even though the new parasitoid shared many morphological and developmental characteristics with other Perkinsozoan parasites, it differed from them by its densely packed trophocyte structure without a large vacuole or hyaline material during the growth stage. These characteristics are common among Parviluciferaceae members. Furthermore, through palintomic extracellular sporogenesis, it produced characteristic interconnected sporocytes resembling a string of beads. Phylogenetic analyses based on the small subunit and large subunit ribosomal DNA sequences revealed that the new parasitoid was distantly related to the family Parviluciferaceae and was more closely related to the families Perkinsidae and Xcellidae. Morphological, ultrastructural, and molecular data on the new parasitoid raised the need to erect a new family, i.e., Pararosariidae, within the phylum Perkinsozoa with Pararosarium dinoexitiosum gen. et sp. nov. as the type species. The isolation and establishment in culture of the new parasitoid outside the family Parviluciferaceae in the present study would contribute to the better understanding of the diversity of Perkinsozoan parasites and provide useful material for comparisons to other parasite species in the further study.
Collapse
Affiliation(s)
- Boo Seong Jeon
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju, South Korea
| | - Myung Gil Park
- LOHABE, Department of Oceanography, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
5
|
Reñé A, Alacid E, Gallisai R, Chambouvet A, Fernández-Valero AD, Garcés E. New Perkinsea Parasitoids of Dinoflagellates Distantly Related to Parviluciferaceae Members. Front Microbiol 2021; 12:701196. [PMID: 34421856 PMCID: PMC8375308 DOI: 10.3389/fmicb.2021.701196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/12/2021] [Indexed: 11/16/2022] Open
Abstract
Perkinsea is a phylogenetic group of protists that includes parasites of distantly related hosts. However, its diversity is still mainly composed of environmental sequences, mostly obtained from freshwater environments. Efforts to isolate and culture parasitoids of dinoflagellates have led to the description of several phylogenetically closely related species constituting the Parviluciferaceae family. In this study, two new parasitoid species infecting dinoflagellates during recurrent coastal blooms are reported. Using the ribosomal RNA (rRNA) gene phylogenies, we show that both cluster within Perkinsea, one of them at the base of Parviluciferaceae and the other in a distinct branch unrelated to other described species. The establishment of host-parasite lab cultures of the latter allowed its morphological characterization, resulting in the formal description of Maranthos nigrum gen. nov., sp. nov. The life-cycle development of the two parasitoids is generally the same as that of other members of the Parviluciferaceae family but they differ in the features of the trophont and sporont stages, including the arrangement of zoospores during the mature sporangium stage and the lack of specialized structures that release the zoospores into the environment. Laboratory cross-infection experiments showed that the parasitoid host range is restricted to dinoflagellates, although it extends across several different genera. The maximum prevalence reached in the tested host populations was lower than in other Parviluciferaceae members. The findings from this study suggest that Perkinsea representatives infecting dinoflagellates are more widespread than previously thought.
Collapse
Affiliation(s)
- Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Elisabet Alacid
- Living Systems Institute, School of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom.,Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Rachele Gallisai
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | | | - Alan D Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Barcelona, Spain
| |
Collapse
|
6
|
Reñé A, Timoneda N, Sampedro N, Alacid E, Gallisai R, Gordi J, Fernández-Valero AD, Pernice MC, Flo E, Garcés E. Host preferences of coexisting Perkinsea parasitoids during coastal dinoflagellate blooms. Mol Ecol 2021; 30:2417-2433. [PMID: 33756046 DOI: 10.1111/mec.15895] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/04/2023]
Abstract
Parasites in aquatic systems are highly diverse and ubiquitous. In marine environments, parasite-host interactions contribute substantially to shaping microbial communities, but their nature and complexity remain poorly understood. In this study, we examined the relationship between Perkinsea parasitoids and bloom-forming dinoflagellate species. Our aim was to determine whether parasite-host species interactions are specific and whether the diversity and distribution of parasitoids are shaped by their dinoflagellate hosts. Several locations along the Catalan coast (NW Mediterranean Sea) were sampled during the blooms of five dinoflagellate species and the diversity of Perkinsea was determined by combining cultivation-based methods with metabarcoding of the V4 region of 18S rDNA. Most known species of Parviluciferaceae, and others not yet described, were detected, some of them coexisting in the same coastal location, and with a wide distribution. The specific parasite-host interactions determined for each of the studied blooms demonstrated the host preferences exhibited by parasitoids in nature. The dominance of a species within the parasitoid community is driven by the presence and abundances of its preferred host(s). The absence of parasitoid species, often associated with a low abundance of their preferred hosts, suggested that high infection rates are reached only under conditions that favour parasitoid propagation, especially dinoflagellate blooms.
Collapse
Affiliation(s)
- Albert Reñé
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Natàlia Timoneda
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Nagore Sampedro
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Elisabet Alacid
- Living Systems Institute, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK.,Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Rachele Gallisai
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Jordina Gordi
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Alan D Fernández-Valero
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Massimo C Pernice
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Eva Flo
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia, Institut de Ciències del Mar (CSIC), Pg. Marítim de la Barceloneta, 37-49, Barcelona, Catalonia, 08003, Spain
| |
Collapse
|
7
|
Alacid E, Reñé A, Gallisai R, Paloheimo A, Garcés E, Kremp A. Description of two new coexisting parasitoids of blooming dinoflagellates in the Baltic sea: Parvilucifera catillosa sp. nov. and Parvilucifera sp. (Perkinsea, Alveolata). HARMFUL ALGAE 2020; 100:101944. [PMID: 33298365 DOI: 10.1016/j.hal.2020.101944] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Perkinsea are a group of intracellular protist parasites that inhabit all types of aquatic environments and cause significant population declines of a wide variety of hosts. However, the diversity of this lineage is mostly represented by environmental rDNA sequences. Complete descriptions of Perkinsea that infect marine dinoflagellates have increased in recent literature due to the identification, isolation and culturing of representatives during bloom events, contributing to expand the knowledge on the diversity and ecology of the group. Shallow coastal areas in the Baltic Sea suffer seasonal dinoflagellate blooms. In summer 2016, two parasitoids were isolated during a Kryptoperidinium foliaceum bloom in the Baltic Sea. Morphological features and sequences of the small and large subunit of the ribosomal DNA gene revealed these two parasitoids were new species that belong to the genus Parvilucifera. This is the first time that Parvilucifera infections are reported in the Inner Baltic Sea. The first species, Parvilucifera sp. has some morphological and phylogenetic features in common with P. sinerae and P. corolla, although its ultrastructure could not be studied and the formal description could not be done. The second new species, named Parvilucifera catillosa, has several distinct morphological features in its zoospores (e.g. the presence of a rostrum), and in the shape and size of the apertures in the sporangium stage, which are larger and more protuberant than in the other species of the genus. Infections observed in the field and cross-infection experiments determined that the host range of both Parvilucifera species was restricted to dinoflagellates, each one showing a different host preference. The coexistence in the same environment by the two closely related parasitoids with very similar life cycles suggests that their niche separation is the preferred host.
Collapse
Affiliation(s)
- Elisabet Alacid
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain; Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford, OX1 3SZ, United Kingdom.
| | - Albert Reñé
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain
| | - Rachele Gallisai
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain
| | - Aurora Paloheimo
- Finnish Environment Institute (SYKE), Marine Research Laboratory, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland
| | - Esther Garcés
- Departament de Biologia Marina i Oceanografia. Institut de Ciències del Mar (CSIC). Pg. Marítim de la Barceloneta, 37-49 08003 Barcelona, Catalonia, Spain
| | - Anke Kremp
- Finnish Environment Institute (SYKE), Marine Research Laboratory, Agnes Sjöbergin katu 2, 00790 Helsinki, Finland; Leibniz Institute for Baltic Sea Research Warnemünde, Department of Biological Oceanography, Seestraße 15, 18119 Rostock, Germany
| |
Collapse
|
8
|
Jeon BS, Park MG. Parvilucifera multicavata sp. nov. (Alveolata, Perkinsozoa), a New Parasitoid Infecting Marine Dinoflagellates Having Abundant Apertures on the Sporangium. Protist 2020; 171:125743. [DOI: 10.1016/j.protis.2020.125743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 10/24/2022]
|
9
|
Variability and Community Composition of Marine Unicellular Eukaryote Assemblages in a Eutrophic Mediterranean Urban Coastal Area with Marked Plankton Blooms and Red Tides. DIVERSITY-BASEL 2020. [DOI: 10.3390/d12030114] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The Thessaloniki Bay is a eutrophic coastal area which has been characterized in recent years by frequent and intense phytoplankton blooms and red tides. The aim of the study was to investigate the underexplored diversity of marine unicellular eukaryotes in four different sampling sites in Thessaloniki Bay during a year of plankton blooms, red tides, and mucilage aggregates. High-Throughput Sequencing (HTS) was applied in extracted DNA from weekly water samples targeting the 18S rRNA gene. In almost all samples, phytoplankton blooms and/or red tides and mucilage aggregates were observed. The metabarcoding analysis has detected the known unicellular eukaryotic groups frequently observed in the Bay, dominated by Bacillariophyta and Dinoflagellata, and revealed taxonomic groups previously undetected in the study area (MALVs, MAST, and Cercozoa). The dominant OTUs were closely related to species known to participate in red tides, harmful blooms, and mucilage aggregates. Other OTUs, present also during the blooms in low abundance (number of reads), were closely related to known harmful species, suggesting the occurrence of rare taxa with potential negative impacts on human health not detectable with classical microscopy. Overall, the unicellular eukaryote assemblages showed temporal patterns rather than small-scale spatial separation responding to the variability of physical and chemical factors.
Collapse
|