Garrison LP, Bauch CT, Bresnahan BW, Hazlet TK, Kadiyala S, Veenstra DL. Using cost-effectiveness analysis to support research and development portfolio prioritization for product innovations in measles vaccination.
J Infect Dis 2011;
204 Suppl 1:S124-32. [PMID:
21666153 DOI:
10.1093/infdis/jir114]
[Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND
Several potential measles vaccine innovations are in development to address the shortcomings of the current vaccine. Funders need to prioritize their scarce research and development resources. This article demonstrates the usefulness of cost-effectiveness analysis to support these decisions.
METHODS
This study had 4 major components: (1) identifying potential innovations, (2) developing transmission models to assess mortality and morbidity impacts, (3) estimating the unit cost impacts, and (4) assessing aggregate cost-effectiveness in United Nations Children's Fund countries through 2049.
RESULTS
Four promising technologies were evaluated: aerosol delivery, needle-free injection, inhalable dry powder, and early administration DNA vaccine. They are projected to have a small absolute impact in terms of reducing the number of measles cases in most scenarios because of already improving vaccine coverage. Three are projected to reduce unit cost per dose by $0.024 to $0.170 and would improve overall cost-effectiveness. Each will require additional investments to reach the market. Over the next 40 years, the aggregate cost savings could be substantial, ranging from $98.4 million to $689.4 million.
CONCLUSIONS
Cost-effectiveness analysis can help to inform research and development portfolio prioritization decisions. Three new measles vaccination technologies under development hold promise to be cost-saving from a global perspective over the long-term, even after considering additional investment costs.
Collapse